Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces
Geometry & topology, Tome 20 (2016) no. 4, pp. 2253-2334.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Inspired by Le Calvez’s theory of transverse foliations for dynamical systems on surfaces, we introduce a dynamical invariant, denoted by N, for Hamiltonians on any surface other than the sphere. When the surface is the plane or is closed and aspherical, we prove that on the set of autonomous Hamiltonians this invariant coincides with the spectral invariants constructed by Viterbo on the plane and Schwarz on closed and aspherical surfaces.

Along the way, we obtain several results of independent interest: we show that a formal spectral invariant, satisfying a minimal set of axioms, must coincide with N on autonomous Hamiltonians, thus establishing a certain uniqueness result for spectral invariants; we obtain a “max formula” for spectral invariants on aspherical manifolds; we give a very simple description of the Entov–Polterovich partial quasi-state on aspherical surfaces, and we characterize the heavy and super-heavy subsets of such surfaces.

DOI : 10.2140/gt.2016.20.2253
Classification : 53D40, 53DXX, 37EXX, 37E30
Keywords: spectral invariants, Hamiltonian Floer theory, area-preserving diffeomorphisms

Humilière, Vincent 1 ; Le Roux, Frédéric 1 ; Seyfaddini, Sobhan 2

1 Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France
2 Département de Mathématiques et Applications de l’École Normale Supérieure, 45 rue d’Ulm, 75320 Paris, France, Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, United States
@article{GT_2016_20_4_a8,
     author = {Humili\`ere, Vincent and Le Roux, Fr\'ed\'eric and Seyfaddini, Sobhan},
     title = {Towards a dynamical interpretation of {Hamiltonian} spectral invariants on surfaces},
     journal = {Geometry & topology},
     pages = {2253--2334},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     doi = {10.2140/gt.2016.20.2253},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2253/}
}
TY  - JOUR
AU  - Humilière, Vincent
AU  - Le Roux, Frédéric
AU  - Seyfaddini, Sobhan
TI  - Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces
JO  - Geometry & topology
PY  - 2016
SP  - 2253
EP  - 2334
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2253/
DO  - 10.2140/gt.2016.20.2253
ID  - GT_2016_20_4_a8
ER  - 
%0 Journal Article
%A Humilière, Vincent
%A Le Roux, Frédéric
%A Seyfaddini, Sobhan
%T Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces
%J Geometry & topology
%D 2016
%P 2253-2334
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2253/
%R 10.2140/gt.2016.20.2253
%F GT_2016_20_4_a8
Humilière, Vincent; Le Roux, Frédéric; Seyfaddini, Sobhan. Towards a dynamical interpretation of Hamiltonian spectral invariants on surfaces. Geometry & topology, Tome 20 (2016) no. 4, pp. 2253-2334. doi : 10.2140/gt.2016.20.2253. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2253/

[1] M Audin, M Damian, Morse theory and Floer homology, Springer (2014)

[2] B Bramham, Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves, Ann. of Math. 181 (2015) 1033

[3] B Bramham, Pseudo-rotations with sufficiently Liouvillean rotation number are C0–rigid, Invent. Math. 199 (2015) 561

[4] M Brunella, On a theorem of Sikorav, Enseign. Math. 37 (1991) 83

[5] D N Dore, A D Hanlon, Area preserving maps on S2 : a lower bound on the C0–norm using symplectic spectral invariants, Electron. Res. Announc. Math. Sci. 20 (2013) 97

[6] M Entov, Quasi-morphisms and quasi-states in symplectic topology, preprint (2014)

[7] M Entov, L Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 2003 (2003) 1635

[8] M Entov, L Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006) 75

[9] M Entov, L Polterovich, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009) 773

[10] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[11] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[12] U Frauenfelder, F Schlenk, Hamiltonian dynamics on convex symplectic manifolds, Israel J. Math. 159 (2007) 1

[13] V L Ginzburg, The Conley conjecture, Ann. of Math. 172 (2010) 1127

[14] V L Ginzburg, B Z Gürel, Local Floer homology and the action gap, J. Symplectic Geom. 8 (2010) 323

[15] A Gramain, Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. École Norm. Sup. 6 (1973) 53

[16] M Handel, Commuting homeomorphisms of S2, Topology 31 (1992) 293

[17] D Hein, The Conley conjecture for irrational symplectic manifolds, J. Symplectic Geom. 10 (2012) 183

[18] M W Hirsch, Differential topology, 33, Springer (1976)

[19] V Humilière, R Leclercq, S Seyfaddini, New energy-capacity-type inequalities and uniqueness of continuous Hamiltonians, Comment. Math. Helv. 90 (2015) 1

[20] O Jaulent, Existence d’un feuilletage positivement transverse à un homéomorphisme de surface, Ann. Inst. Fourier (Grenoble) 64 (2014) 1441

[21] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995)

[22] M Kawasaki, Superheavy Lagrangian immersion in 2-torus, preprint (2016)

[23] S Lanzat, Quasi-morphisms and symplectic quasi-states for convex symplectic manifolds, Int. Math. Res. Not. 2013 (2013) 5321

[24] P Le Calvez, Propriétés dynamiques des difféomorphismes de l’anneau et du tore, 204, Société Mathématique de France (1991) 131

[25] P Le Calvez, Une version feuilletée équivariante du théorème de translation de Brouwer, Publ. Math. Inst. Hautes Études Sci. 102 (2005) 1

[26] P Le Calvez, A finite dimensional approach to Bramham’s approximation theorem, preprint (2013)

[27] E L Lima, On the local triviality of the restriction map for embeddings, Comment. Math. Helv. 38 (1964) 163

[28] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004)

[29] Y G Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, from: "The breadth of symplectic and Poisson geometry" (editors J Marsden, T Ratiu), Progr. Math. 232, Birkhäuser (2005) 525

[30] Y G Oh, Lectures on Floer theory and spectral invariants of Hamiltonian flows, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 321

[31] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[32] L Polterovich, The geometry of the group of symplectic diffeomorphisms, Birkhäuser (2001)

[33] L Polterovich, Symplectic geometry of quantum noise, Comm. Math. Phys. 327 (2014) 481

[34] L Polterovich, K F Siburg, On the asymptotic geometry of area-preserving maps, Math. Res. Lett. 7 (2000) 233

[35] P Py, Quasi-morphisme de Calabi sur les surfaces de genre supérieur, C. R. Math. Acad. Sci. Paris 341 (2005) 29

[36] P Py, Quasi-morphismes de Calabi et graphe de Reeb sur le tore, C. R. Math. Acad. Sci. Paris 343 (2006) 323

[37] M Rosenberg, Py–Calabi quasi-morphisms and quasi-states on orientable surfaces of higher genus, Israel J. Math. 180 (2010) 163

[38] D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143

[39] D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303

[40] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419

[41] S Seyfaddini, The displaced disks problem via symplectic topology, C. R. Math. Acad. Sci. Paris 351 (2013) 841

[42] S Seyfaddini, Spectral killers and Poisson bracket invariants, J. Mod. Dyn. 9 (2015) 51

[43] J C Sikorav, Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 119

[44] D Théret, A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl. 96 (1999) 249

[45] M Usher, Floer homology in disk bundles and symplectically twisted geodesic flows, J. Mod. Dyn. 3 (2009) 61

[46] C Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685

[47] F Zapolsky, Isotopy-invariant topological measures on closed orientable surfaces of higher genus, Math. Z. 270 (2012) 133

[48] F Zapolsky, Reeb graph and quasi-states on the two-dimensional torus, Israel J. Math. 188 (2012) 111

Cité par Sources :