Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using Taubes’ periodic ends theorem, Auckly gave examples of toroidal and hyperbolic irreducible integer homology spheres which are not surgery on a knot in the three-sphere. We use Heegaard Floer homology to give an obstruction to a homology sphere being surgery on a knot, and then use this obstruction to construct infinitely many small Seifert fibered examples.
Hom, Jennifer 1 ; Karakurt, Çağrı 2 ; Lidman, Tye 3
@article{GT_2016_20_4_a7, author = {Hom, Jennifer and Karakurt, \c{C}a\u{g}r{\i} and Lidman, Tye}, title = {Surgery obstructions and {Heegaard} {Floer} homology}, journal = {Geometry & topology}, pages = {2219--2251}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2016}, doi = {10.2140/gt.2016.20.2219}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/} }
TY - JOUR AU - Hom, Jennifer AU - Karakurt, Çağrı AU - Lidman, Tye TI - Surgery obstructions and Heegaard Floer homology JO - Geometry & topology PY - 2016 SP - 2219 EP - 2251 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/ DO - 10.2140/gt.2016.20.2219 ID - GT_2016_20_4_a7 ER -
Hom, Jennifer; Karakurt, Çağrı; Lidman, Tye. Surgery obstructions and Heegaard Floer homology. Geometry & topology, Tome 20 (2016) no. 4, pp. 2219-2251. doi : 10.2140/gt.2016.20.2219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/
[1] Surgery numbers of 3–manifolds : a hyperbolic example, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 21
,[2] Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990) 181
, ,[3] Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43
, ,[4] Finite knot surgeries and Heegaard Floer homology, Algebr. Geom. Topol. 15 (2015) 667
,[5] Three-dimensional link theory and invariants of plane curve singularities, 110, Princeton Univ. Press (1985)
, ,[6] Mapping cone formula in Heegaard Floer homology and Dehn surgery on knots in S3, preprint (2014)
,[7] Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371
, ,[8] The big Dehn surgery graph and the link of S3, preprint (2013)
, ,[9] Reducible surgeries and Heegaard Floer homology, Math. Res. Lett. 22 (2015) 763
, , ,[10] Rank inequalities for the Heegaard Floer homology of Seifert homology spheres, Trans. Amer. Math. Soc. 367 (2015) 7291
, ,[11] Problems in low-dimensional topology, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
, ,[12] A representation of orientable combinatorial 3–manifolds, Ann. of Math. 76 (1962) 531
,[13] Heegaard Floer homology and integer surgeries on links, preprint (2010)
, ,[14] The Kourovka notebook: unsolved problems in group theory, Russian Academy of Sciences Siberian Division (2014) 227
, , editors,[15] On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991
,[16] Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology" (editor K C Millett), Lecture Notes in Math. 664, Springer (1978) 163
, ,[17] Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1
, ,[18] Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179
, ,[19] On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185
, ,[20] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159
, ,[21] Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1
, ,[22] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[23] Invariants for homology 3–spheres, 140, Springer (2002)
,[24] A textbook of topology, 89, Academic Press (1980)
, ,[25] Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363
,[26] Modifications and cobounding manifolds, Canad. J. Math. 12 (1960) 503
,Cité par Sources :