Surgery obstructions and Heegaard Floer homology
Geometry & topology, Tome 20 (2016) no. 4, pp. 2219-2251.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using Taubes’ periodic ends theorem, Auckly gave examples of toroidal and hyperbolic irreducible integer homology spheres which are not surgery on a knot in the three-sphere. We use Heegaard Floer homology to give an obstruction to a homology sphere being surgery on a knot, and then use this obstruction to construct infinitely many small Seifert fibered examples.

DOI : 10.2140/gt.2016.20.2219
Classification : 57M27, 57R58, 57R65
Keywords: Dehn surgery, $3$–manifold, Floer homology

Hom, Jennifer 1 ; Karakurt, Çağrı 2 ; Lidman, Tye 3

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States
2 Department of Mathematics, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
3 Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States
@article{GT_2016_20_4_a7,
     author = {Hom, Jennifer and Karakurt, \c{C}a\u{g}r{\i} and Lidman, Tye},
     title = {Surgery obstructions and {Heegaard} {Floer} homology},
     journal = {Geometry & topology},
     pages = {2219--2251},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     doi = {10.2140/gt.2016.20.2219},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/}
}
TY  - JOUR
AU  - Hom, Jennifer
AU  - Karakurt, Çağrı
AU  - Lidman, Tye
TI  - Surgery obstructions and Heegaard Floer homology
JO  - Geometry & topology
PY  - 2016
SP  - 2219
EP  - 2251
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/
DO  - 10.2140/gt.2016.20.2219
ID  - GT_2016_20_4_a7
ER  - 
%0 Journal Article
%A Hom, Jennifer
%A Karakurt, Çağrı
%A Lidman, Tye
%T Surgery obstructions and Heegaard Floer homology
%J Geometry & topology
%D 2016
%P 2219-2251
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/
%R 10.2140/gt.2016.20.2219
%F GT_2016_20_4_a7
Hom, Jennifer; Karakurt, Çağrı; Lidman, Tye. Surgery obstructions and Heegaard Floer homology. Geometry & topology, Tome 20 (2016) no. 4, pp. 2219-2251. doi : 10.2140/gt.2016.20.2219. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2219/

[1] D Auckly, Surgery numbers of 3–manifolds : a hyperbolic example, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 21

[2] S Boyer, D Lines, Surgery formulae for Casson’s invariant and extensions to homology lens spaces, J. Reine Angew. Math. 405 (1990) 181

[3] M B Can, Ç Karakurt, Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43

[4] M I Doig, Finite knot surgeries and Heegaard Floer homology, Algebr. Geom. Topol. 15 (2015) 667

[5] D Eisenbud, W Neumann, Three-dimensional link theory and invariants of plane curve singularities, 110, Princeton Univ. Press (1985)

[6] F Gainullin, Mapping cone formula in Heegaard Floer homology and Dehn surgery on knots in S3, preprint (2014)

[7] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371

[8] N R Hoffman, G S Walsh, The big Dehn surgery graph and the link of S3, preprint (2013)

[9] J Hom, T Lidman, N Zufelt, Reducible surgeries and Heegaard Floer homology, Math. Res. Lett. 22 (2015) 763

[10] Ç Karakurt, T Lidman, Rank inequalities for the Heegaard Floer homology of Seifert homology spheres, Trans. Amer. Math. Soc. 367 (2015) 7291

[11] R Kirby, Editor, Problems in low-dimensional topology, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[12] W B R Lickorish, A representation of orientable combinatorial 3–manifolds, Ann. of Math. 76 (1962) 531

[13] C Manolescu, P Ozsvath, Heegaard Floer homology and integer surgeries on links, preprint (2010)

[14] V D Mazurov, E I Khukhro, editors, The Kourovka notebook: unsolved problems in group theory, Russian Academy of Sciences Siberian Division (2014) 227

[15] A Némethi, On the Ozsváth–Szabó invariant of negative definite plumbed 3–manifolds, Geom. Topol. 9 (2005) 991

[16] W D Neumann, F Raymond, Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology" (editor K C Millett), Lecture Notes in Math. 664, Springer (1978) 163

[17] Y Ni, Z Wu, Cosmetic surgeries on knots in S3, J. Reine Angew. Math. 706 (2015) 1

[18] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[19] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185

[20] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159

[21] P S Ozsváth, Z Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011) 1

[22] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[23] N Saveliev, Invariants for homology 3–spheres, 140, Springer (2002)

[24] H Seifert, W Threlfall, A textbook of topology, 89, Academic Press (1980)

[25] C H Taubes, Gauge theory on asymptotically periodic 4–manifolds, J. Differential Geom. 25 (1987) 363

[26] A H Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960) 503

Cité par Sources :