Gromov–Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies
Geometry & topology, Tome 20 (2016) no. 4, pp. 2135-2218.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct an integrable hierarchy in the form of Hirota quadratic equations (HQEs) that governs the Gromov–Witten invariants of the Fano orbifold projective curve a1,a2,a31. The vertex operators in our construction are given in terms of the K–theory of a1,a2,a31 via Iritani’s Γ–class modification of the Chern character map. We also identify our HQEs with an appropriate Kac–Wakimoto hierarchy of ADE type. In particular, we obtain a generalization of the famous Toda conjecture about the GW invariants of 1 to all Fano orbifold curves.

DOI : 10.2140/gt.2016.20.2135
Classification : 14N35, 17B69
Keywords: Gromov–Witten theory, Fano orbifold curves, ADE-Toda hierarchies

Milanov, Todor 1 ; Shen, Yefeng 2 ; Tseng, Hsian-Hua 3

1 Kavli IPMU, University of Tokyo (WPI), 5-1-5 Kashiwanoha, Kashiwa 2778583, Japan
2 Department of Mathematics, Stanford University, 450 Serra Mall, Building 380, Stanford, CA 94305, United States
3 Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, United States
@article{GT_2016_20_4_a6,
     author = {Milanov, Todor and Shen, Yefeng and Tseng, Hsian-Hua},
     title = {Gromov{\textendash}Witten theory of {Fano} orbifold curves, {Gamma} integral structures and {ADE-Toda} hierarchies},
     journal = {Geometry & topology},
     pages = {2135--2218},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     doi = {10.2140/gt.2016.20.2135},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2135/}
}
TY  - JOUR
AU  - Milanov, Todor
AU  - Shen, Yefeng
AU  - Tseng, Hsian-Hua
TI  - Gromov–Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies
JO  - Geometry & topology
PY  - 2016
SP  - 2135
EP  - 2218
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2135/
DO  - 10.2140/gt.2016.20.2135
ID  - GT_2016_20_4_a6
ER  - 
%0 Journal Article
%A Milanov, Todor
%A Shen, Yefeng
%A Tseng, Hsian-Hua
%T Gromov–Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies
%J Geometry & topology
%D 2016
%P 2135-2218
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2135/
%R 10.2140/gt.2016.20.2135
%F GT_2016_20_4_a6
Milanov, Todor; Shen, Yefeng; Tseng, Hsian-Hua. Gromov–Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda hierarchies. Geometry & topology, Tome 20 (2016) no. 4, pp. 2135-2218. doi : 10.2140/gt.2016.20.2135. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2135/

[1] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337

[2] N A’Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, I, Math. Ann. 213 (1975) 1

[3] N A’Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes, II, from: "Proceedings of the International Congress of Mathematicians", Canad. Math. Congress (1975) 395

[4] V I Arnol’D, S M Guseĭn-Zade, A N Varchenko, Singularities of differentiable maps, II : Monodromy and asymptotics of integrals, 83, Birkhäuser (1988)

[5] B Bakalov, T Milanov, W–constraints for the total descendant potential of a simple singularity, Compos. Math. 149 (2013) 840

[6] A Buryak, H Posthuma, S Shadrin, On deformations of quasi-Miura transformations and the Dubrovin–Zhang bracket, J. Geom. Phys. 62 (2012) 1639

[7] A Buryak, H Posthuma, S Shadrin, A polynomial bracket for the Dubrovin–Zhang hierarchies, J. Differential Geom. 92 (2012) 153

[8] C Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007) 405

[9] G Carlet, The extended bigraded Toda hierarchy, J. Phys. A 39 (2006) 9411

[10] G Carlet, B Dubrovin, Y Zhang, The extended Toda hierarchy, Mosc. Math. J. 4 (2004) 313

[11] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25

[12] T Coates, A Corti, H Iritani, H H Tseng, Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377

[13] T Coates, A Corti, H Iritani, H H Tseng, A mirror theorem for toric stacks, Compos. Math. 151 (2015) 1878

[14] E Date, M Jimbo, M Kashiwara, T Miwa, Transformation groups for soliton equations, III : Operator approach to the Kadomtsev–Petviashvili equation, J. Phys. Soc. Japan 50 (1981) 3806

[15] B Dubrovin, Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120

[16] B Dubrovin, Y Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, (2001)

[17] E Frenkel, A Givental, T Milanov, Soliton equations, vertex operators, and simple singularities, Funct. Anal. Other Math. 3 (2010) 47

[18] I B Frenkel, V G Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980/81) 23

[19] S Galkin, V Golyshev, H Iritani, Gamma classes and quantum cohomology of Fano manifolds : Gamma conjectures, Duke Math. J. 165 (2016) 2005

[20] A Givental, A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141

[21] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551

[22] A B Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices (2001) 1265

[23] A Givental, An−1 singularities and nKdV hierarchies, Mosc. Math. J. 3 (2003) 475

[24] A B Givental, T E Milanov, Simple singularities and integrable hierarchies, from: "The breadth of symplectic and Poisson geometry" (editors J E Marsden, T S Ratiu), Progr. Math. 232, Birkhäuser (2005) 173

[25] P A Griffiths, On the periods of certain rational integrals, I, Ann. of Math. 90 (1969) 460

[26] P A Griffiths, On the periods of certain rational integrals, II, Ann. of Math. 90 (1969) 496

[27] S M Guseĭn-Zade, Dynkin diagrams of the singularities of functions of two variables, Funkcional. Anal. i Priložen. 8 (1974) 23

[28] S M Guseĭn-Zade, Intersection matrices for certain singularities of functions of two variables, Funkcional. Anal. i Priložen. 8 (1974) 11

[29] C Hertling, Frobenius manifolds and moduli spaces for singularities, 151, Cambridge Univ. Press (2002)

[30] H Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009) 1016

[31] H Iritani, Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble) 61 (2011) 2909

[32] Y Ishibashi, Y Shiraishi, A Takahashi, Primitive forms for affine cusp polynomials, preprint (2012)

[33] V G Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press (1990)

[34] V Kac, Vertex algebras for beginners, 10, Amer. Math. Soc. (1998)

[35] V G Kac, D H Peterson, 112 constructions of the basic representation of the loop group of E8, from: "Symposium on anomalies, geometry, topology" (editors W A Bardeen, A R White), World Sci. (1985) 276

[36] V G Kac, M Wakimoto, Exceptional hierarchies of soliton equations, from: "Theta functions" (editors L Ehrenpreis, R C Gunning), Proc. Sympos. Pure Math. 49, Amer. Math. Soc. (1989) 191

[37] L Katzarkov, M Kontsevich, T Pantev, Hodge theoretic aspects of mirror symmetry, from: "From Hodge theory to integrability and TQFT tt*–geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 87

[38] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1

[39] T E Milanov, Hirota quadratic equations for the extended Toda hierarchy, Duke Math. J. 138 (2007) 161

[40] T E Milanov, H H Tseng, The spaces of Laurent polynomials, Gromov–Witten theory of P1–orbifolds, and integrable hierarchies, J. Reine Angew. Math. 622 (2008) 189

[41] P Rossi, Gromov–Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory of Seifert fibrations, Math. Ann. 348 (2010) 265

[42] A N Rudakov, Markov numbers and exceptional bundles on P2, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988) 100, 240

[43] K Saito, On the periods of primitive integrals, I, (1982)

[44] K Saito, A Takahashi, From primitive forms to Frobenius manifolds, from: "From Hodge theory to integrability and TQFT tt*-geometry" (editors R Y Donagi, K Wendland), Proc. Sympos. Pure Math. 78, Amer. Math. Soc. (2008) 31

[45] M Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, from: "Random systems and dynamical systems", RIMS Kokyuroku 439, Res. Inst. Math. Sci. Kyoto Univ. (1981) 30

[46] R Steinberg, Finite subgroups of SU2, Dynkin diagrams and affine Coxeter elements, Pacific J. Math. 118 (1985) 587

[47] R Stekolshchik, Notes on Coxeter transformations and the McKay correspondence, Springer (2008)

[48] A Takahashi, Mirror symmetry between orbifold projective lines and cusp singularities, from: "Singularities in geometry and topology" (editors V Blanlœil, O Saeki), Adv. Stud. Pure Math. 66, Math. Soc. Japan (2015) 257

[49] C Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525

[50] H H Tseng, Orbifold quantum Riemann–Roch, Lefschetz and Serre, Geom. Topol. 14 (2010) 1

[51] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry", Lehigh Univ. (1991) 243

Cité par Sources :