The motive of a classifying space
Geometry & topology, Tome 20 (2016) no. 4, pp. 2079-2133.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give the first examples of finite groups G such that the Chow ring of the classifying space BG depends on the base field, even for fields containing the algebraic closure of . As a tool, we give several characterizations of the varieties that satisfy Künneth properties for Chow groups or motivic homology.

We define the (compactly supported) motive of a quotient stack in Voevodsky’s derived category of motives. This makes it possible to ask when the motive of BG is mixed Tate, which is equivalent to the motivic Künneth property. We prove that BG is mixed Tate for various “well-behaved” finite groups G, such as the finite general linear groups in cross-characteristic and the symmetric groups.

DOI : 10.2140/gt.2016.20.2079
Classification : 14C15, 14F42, 14M20, 14A20
Keywords: Chow ring, mixed Tate motive, classifying space

Totaro, Burt 1

1 Department of Mathematics, University of California, Los Angeles, Box 951555, Los Angeles, CA 90095-1555, United States
@article{GT_2016_20_4_a5,
     author = {Totaro, Burt},
     title = {The motive of a classifying space},
     journal = {Geometry & topology},
     pages = {2079--2133},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     doi = {10.2140/gt.2016.20.2079},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2079/}
}
TY  - JOUR
AU  - Totaro, Burt
TI  - The motive of a classifying space
JO  - Geometry & topology
PY  - 2016
SP  - 2079
EP  - 2133
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2079/
DO  - 10.2140/gt.2016.20.2079
ID  - GT_2016_20_4_a5
ER  - 
%0 Journal Article
%A Totaro, Burt
%T The motive of a classifying space
%J Geometry & topology
%D 2016
%P 2079-2133
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2079/
%R 10.2140/gt.2016.20.2079
%F GT_2016_20_4_a5
Totaro, Burt. The motive of a classifying space. Geometry & topology, Tome 20 (2016) no. 4, pp. 2079-2133. doi : 10.2140/gt.2016.20.2079. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.2079/

[1] M Aschbacher, Finite group theory, 10, Cambridge Univ. Press (2000)

[2] A Auel, J L Colliot-Thélène, R Parimala, Universal unramified cohomology of cubic fourfolds containing a plane, preprint (2013)

[3] S Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994) 537

[4] S Bloch, Lectures on algebraic cycles, 16, Cambridge Univ. Press (2010)

[5] S Bloch, V Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235

[6] F A Bogomolov, The Brauer group of quotient spaces of linear representations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) 485, 688

[7] F A Bogomolov, Stable cohomology of groups and algebraic varieties, Mat. Sb. 183 (1992) 3

[8] F A Bogomolov, P I Katsylo, Rationality of some quotient varieties, Mat. Sb. 126(168) (1985) 584

[9] M Bökstedt, A Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993) 209

[10] R Carter, P Fong, The Sylow 2–subgroups of the finite classical groups, J. Algebra 1 (1964) 139

[11] S Cernele, M Kamgarpour, Z Reichstein, Maximal representation dimension of finite p–groups, J. Group Theory 14 (2011) 637

[12] H Chu, S J Hu, M C Kang, Y G Prokhorov, Noether’s problem for groups of order 32, J. Algebra 320 (2008) 3022

[13] H Chu, M C Kang, Rationality of p–group actions, J. Algebra 237 (2001) 673

[14] D C Cisinski, F Déglise, Local and stable homological algebra in Grothendieck abelian categories, Homology, Homotopy Appl. 11 (2009) 219

[15] D C Cisinski, F Déglise, Triangulated categories of mixed motives, preprint (2009)

[16] D C Cisinski, F Déglise, Integral mixed motives in equal characteristic, Doc. Math. Special volume : Alexander S. Merkurjev’s sixtieth birthday (2015) 145

[17] J L Colliot-Thélène, Birational invariants, purity and the Gersten conjecture, from: "K–theory and algebraic geometry : connections with quadratic forms and division algebras" (editors B Jacob, A Rosenberg), Proc. Sympos. Pure Math. 58, Amer. Math. Soc. (1995) 1

[18] J L Colliot-Thélène, A Pirutka, Hypersurfaces quartiques de dimension 3 : non rationalité stable, Ann. Sci. École Norm. Sup. 49 (2016) 371

[19] D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615

[20] D Edidin, W Graham, Equivariant intersection theory, Invent. Math. 131 (1998) 595

[21] T Ekedahl, A geometric invariant of a finite group, preprint (2009)

[22] A D Elmendorf, I Kříž, M A Mandell, J P May, Modern foundations for stable homotopy theory, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 213

[23] W Fulton, Intersection theory, 2, Springer (1998)

[24] S Garibaldi, A Merkurjev, J P Serre, Cohomological invariants in Galois cohomology, 28, Amer. Math. Soc. (2003)

[25] A Grothendieck, Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965) 5

[26] A Hoshi, M C Kang, B E Kunyavskii, Noether’s problem and unramified Brauer groups, Asian J. Math. 17 (2013) 689

[27] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[28] A Huber, B Kahn, The slice filtration and mixed Tate motives, Compos. Math. 142 (2006) 907

[29] U Jannsen, Motivic sheaves and filtrations on Chow groups, from: "Motives" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 245

[30] R Joshua, Algebraic K–theory and higher Chow groups of linear varieties, Math. Proc. Cambridge Philos. Soc. 130 (2001) 37

[31] B Kahn, Algebraic K–theory, algebraic cycles and arithmetic geometry, from: "Handbook of K–theory, Volume 1" (editors E M Friedlander, D R Grayson), Springer (2005) 351

[32] B Kahn, R Sujatha, Birational motives, I: Pure birational motives, preprint (2015)

[33] N A Karpenko, A S Merkurjev, On standard norm varieties, Ann. Sci. Éc. Norm. Supér. 46 (2013) 175

[34] S Kelly, Triangulated categories of motives in positive characteristic, preprint (2013)

[35] S I Kimura, Surjectivity of the cycle map for Chow motives, from: "Motives and algebraic cycles" (editors R de Jeu, J D Lewis), Fields Inst. Commun. 56, Amer. Math. Soc. (2009) 157

[36] S L Kleiman, Motives, from: "Algebraic geometry, Oslo 1970" (editor F Oort), Wolters-Noordhoff (1972) 53

[37] B Kunyavskiĭ, The Bogomolov multiplier of finite simple groups, from: "Cohomological and geometric approaches to rationality problems" (editors F Bogomolov, Y Tschinkel), Progr. Math. 282, Birkhäuser (2010) 209

[38] M Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001) 299

[39] A Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. 78 (2008) 51

[40] F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999) 45

[41] D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 34, Springer (1994)

[42] A Neeman, Some new axioms for triangulated categories, J. Algebra 139 (1991) 221

[43] A Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996) 205

[44] A Neeman, Triangulated categories, 148, Princeton Univ. Press (2001)

[45] Y P Nesterenko, A A Suslin, Homology of the general linear group over a local ring, and Milnor’s K–theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 121

[46] O Röndigs, P A Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008) 689

[47] M Rost, Chow groups with coefficients, Doc. Math. 1 (1996) 319

[48] A J Scholl, Classical motives, from: "Motives" (editors U Jannsen, S Kleiman, J P Serre), Proc. Sympos. Pure Math. 55, Amer. Math. Soc. (1994) 163

[49] E Shinder, Künneth formula for motivic cohomology

[50] H Sumihiro, Equivariant completion, II, J. Math. Kyoto Univ. 15 (1975) 573

[51] A A Suslin, Algebraic K–theory of fields, from: "Proceedings of the International Congress of Mathematicians, Volume 1" (editor A M Gleason), Amer. Math. Soc. (1987) 222

[52] T G Group, GAP: Groups, algorithms and programming (2013)

[53] T S P Authors, Stacks project (2014)

[54] B Totaro, Milnor K–theory is the simplest part of algebraic K–theory, K–Theory 6 (1992) 177

[55] B Totaro, The Chow ring of a classifying space, from: "Algebraic K–theory" (editors W Raskind, C Weibel), Proc. Sympos. Pure Math. 67, Amer. Math. Soc. (1999) 249

[56] B Totaro, Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma 2 (2014)

[57] B Totaro, Group cohomology and algebraic cycles, 204, Cambridge Univ. Press (2014)

[58] B Totaro, Adjoint functors on the derived category of motives, preprint (2015)

[59] V Voevodsky, Triangulated categories of motives over a field, from: "Cycles, transfers, and motivic homology theories" (editor Princeton), Ann. of Math. Stud. 143, Princeton Univ. Press (2000) 188

[60] V Voevodsky, Open problems in the motivic stable homotopy theory, I, from: "Motives, polylogarithms and Hodge theory, Part I" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, Int. Press (2002) 3

[61] V Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 1

[62] V Voevodsky, Motivic Eilenberg–Maclane spaces, Publ. Math. Inst. Hautes Études Sci. 112 (2010) 1

[63] A J Weir, Sylow p–subgroups of the classical groups over finite fields with characteristic prime to p, Proc. Amer. Math. Soc. 6 (1955) 529

Cité par Sources :