Quotient singularities, eta invariants, and self-dual metrics
Geometry & topology, Tome 20 (2016) no. 3, pp. 1773-1806.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

There are three main components to this article:

DOI : 10.2140/gt.2016.20.1773
Classification : 53C25, 58J20
Keywords: quotient singularities, eta invariants, self-dual, ALE, orbifold

Lock, Michael 1 ; Viaclovsky, Jeff 2

1 Department of Mathematics, University of Texas, Austin, TX 78712, United States
2 Department of Mathematics, University of Wisconsin, Madison, WI 53706, United States
@article{GT_2016_20_3_a12,
     author = {Lock, Michael and Viaclovsky, Jeff},
     title = {Quotient singularities, eta~invariants, and self-dual metrics},
     journal = {Geometry & topology},
     pages = {1773--1806},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     doi = {10.2140/gt.2016.20.1773},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1773/}
}
TY  - JOUR
AU  - Lock, Michael
AU  - Viaclovsky, Jeff
TI  - Quotient singularities, eta invariants, and self-dual metrics
JO  - Geometry & topology
PY  - 2016
SP  - 1773
EP  - 1806
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1773/
DO  - 10.2140/gt.2016.20.1773
ID  - GT_2016_20_3_a12
ER  - 
%0 Journal Article
%A Lock, Michael
%A Viaclovsky, Jeff
%T Quotient singularities, eta invariants, and self-dual metrics
%J Geometry & topology
%D 2016
%P 1773-1806
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1773/
%R 10.2140/gt.2016.20.1773
%F GT_2016_20_3_a12
Lock, Michael; Viaclovsky, Jeff. Quotient singularities, eta invariants, and self-dual metrics. Geometry & topology, Tome 20 (2016) no. 3, pp. 1773-1806. doi : 10.2140/gt.2016.20.1773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1773/

[1] A G Ache, J A Viaclovsky, Asymptotics of the self-dual deformation complex, J. Geom. Anal. 25 (2015) 951

[2] T M Apostol, Modular functions and Dirichlet series in number theory, 41, Springer (1990)

[3] T Ashikaga, M Ishizaka, Another form of the reciprocity law of Dedekind sum, (2008)

[4] S Bando, A Kasue, H Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989) 313

[5] D Baraglia, Topological T-duality for general circle bundles, Pure Appl. Math. Q. 10 (2014) 367

[6] E Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/1968) 336

[7] R L Bryant, Bochner–Kähler metrics, J. Amer. Math. Soc. 14 (2001) 623

[8] D M J Calderbank, M A Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004) 405

[9] X Chen, C Lebrun, B Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008) 1137

[10] H S M Coxeter, The binary polyhedral groups, and other generalizations of the quaternion group, Duke Math. J. 7 (1940) 367

[11] H S M Coxeter, Regular complex polytopes, Cambridge Univ. Press (1991)

[12] M G Dabkowski, M T Lock, On Kähler conformal compactifications of U(n)– invariant ALE spaces, Ann. Global Anal. Geom. 49 (2016) 73

[13] L David, P Gauduchon, The Bochner-flat geometry of weighted projective spaces, from: "Perspectives in Riemannian geometry" (editors V Apostolov, A Dancer, N Hitchin, M Wang), CRM Proc. Lecture Notes 40, Amer. Math. Soc. (2006) 109

[14] S Donaldson, R Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989) 197

[15] P Du Val, Homographies, quaternions and rotations, Clarendon Press (1964)

[16] T Eguchi, A J Hanson, Self-dual solutions to Euclidean gravity, Ann. Physics 120 (1979) 82

[17] A Floer, Self-dual conformal structures on lCP2, J. Differential Geom. 33 (1991) 551

[18] D S Freed, K K Uhlenbeck, Instantons and four-manifolds, 1, Springer (1991)

[19] G W Gibbons, S W Hawking, Gravitational multi-instantons, Physics Letters B 78 (1978) 430

[20] F Hirzebruch, Über vierdimensionale Riemannsche Flächenmehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953) 1

[21] N J Hitchin, Einstein metrics and the eta-invariant, Boll. Un. Mat. Ital. B 11 (1997) 95

[22] N Honda, Self-dual metrics and twenty-eight bitangents, J. Differential Geom. 75 (2007) 175

[23] N Honda, Deformation of LeBrun’s ALE metrics with negative mass, Comm. Math. Phys. 322 (2013) 127

[24] D Joyce, The hypercomplex quotient and the quaternionic quotient, Math. Ann. 290 (1991) 323

[25] D D Joyce, Explicit construction of self-dual 4–manifolds, Duke Math. J. 77 (1995) 519

[26] T Kawasaki, The index of elliptic operators over V –manifolds, Nagoya Math. J. 84 (1981) 135

[27] A Kovalev, M Singer, Gluing theorems for complete anti-self-dual spaces, Geom. Funct. Anal. 11 (2001) 1229

[28] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665

[29] P B Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989) 685

[30] C Lebrun, Counter-examples to the generalized positive action conjecture, Comm. Math. Phys. 118 (1988) 591

[31] C Lebrun, Explicit self-dual metrics on CP2#⋯#CP2, J. Differential Geom. 34 (1991) 223

[32] C Lebrun, B Maskit, On optimal 4–dimensional metrics, J. Geom. Anal. 18 (2008) 537

[33] C Lebrun, M Singer, A Kummer-type construction of self-dual 4–manifolds, Math. Ann. 300 (1994) 165

[34] M T Lock, J A Viaclovsky, Anti-self-dual orbifolds with cyclic quotient singularities, J. Eur. Math. Soc. (JEMS) 17 (2015) 2805

[35] M T Lock, J A Viaclovsky, A smörgåsbord of scalar-flat Kähler ALE surfaces, J. Reine Angew. Math. (2016)

[36] D Mccullough, Isometries of elliptic 3–manifolds, J. London Math. Soc. 65 (2002) 167

[37] H Nakajima, Self-duality of ALE Ricci-flat 4–manifolds and positive mass theorem, from: "Recent topics in differential and analytic geometry" (editor T Ochiai), Adv. Stud. Pure Math. 18, Academic Press (1990) 385

[38] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[39] R Stekolshchik, Notes on Coxeter transformations and the McKay correspondence, Springer (2008)

[40] I Şuvaina, ALE Ricci-flat Kähler metrics and deformations of quotient surface singularities, Ann. Global Anal. Geom. 41 (2012) 109

[41] G Tian, J Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four, Adv. Math. 196 (2005) 346

[42] J A Viaclovsky, An index theorem on anti-self-dual orbifolds, Int. Math. Res. Not. 2013 (2013) 3911

[43] E P Wright, Quotients of gravitational instantons, Ann. Global Anal. Geom. 41 (2012) 91

Cité par Sources :