Everything is illuminated
Geometry & topology, Tome 20 (2016) no. 3, pp. 1737-1762.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study geometrical properties of translation surfaces: the finite blocking property, bounded blocking property, and illumination properties. These are elementary properties which can be fruitfully studied using the dynamical behavior of the SL(2, )–action on the moduli space of translation surfaces. We characterize surfaces with the finite blocking property and bounded blocking property, completing work of the second-named author. Concerning the illumination problem, we also extend results of Hubert, Schmoll and Troubetzkoy, removing the hypothesis that the surface in question is a lattice surface, thus settling a conjecture of theirs. Our results crucially rely on the recent breakthrough results of Eskin and Mirzakhani and of Eskin, Mirzakhani and Mohammadi, and on related results of Wright.

DOI : 10.2140/gt.2016.20.1737
Classification : 37E35, 53A99
Keywords: illumination, translation surfaces, billiards, everything

Lelièvre, Samuel 1 ; Monteil, Thierry 2 ; Weiss, Barak 3

1 Laboratoire de mathématique d’Orsay, UMR 8628 CNRS, Université Paris-Sud 11, Bâtiment 425, campus Orsay-vallée, 91405 Orsay Cedex, France
2 Laboratoire d’Informatique de Paris Nord, UMR 7030 CNRS, Université Paris 13, F-93430 Villetaneuse, France
3 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
@article{GT_2016_20_3_a10,
     author = {Leli\`evre, Samuel and Monteil, Thierry and Weiss, Barak},
     title = {Everything is illuminated},
     journal = {Geometry & topology},
     pages = {1737--1762},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     doi = {10.2140/gt.2016.20.1737},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1737/}
}
TY  - JOUR
AU  - Lelièvre, Samuel
AU  - Monteil, Thierry
AU  - Weiss, Barak
TI  - Everything is illuminated
JO  - Geometry & topology
PY  - 2016
SP  - 1737
EP  - 1762
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1737/
DO  - 10.2140/gt.2016.20.1737
ID  - GT_2016_20_3_a10
ER  - 
%0 Journal Article
%A Lelièvre, Samuel
%A Monteil, Thierry
%A Weiss, Barak
%T Everything is illuminated
%J Geometry & topology
%D 2016
%P 1737-1762
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1737/
%R 10.2140/gt.2016.20.1737
%F GT_2016_20_3_a10
Lelièvre, Samuel; Monteil, Thierry; Weiss, Barak. Everything is illuminated. Geometry & topology, Tome 20 (2016) no. 3, pp. 1737-1762. doi : 10.2140/gt.2016.20.1737. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1737/

[1] A Eskin, M Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space, preprint (2016)

[2] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space, Ann. of Math. 182 (2015) 673

[3] P Hubert, M Schmoll, S Troubetzkoy, Modular fibers and illumination problems, Int. Math. Res. Not. 2008 (2008)

[4] S Lelièvre, B Weiss, Translation surfaces with no convex presentation, Geom. Funct. Anal. 25 (2015) 1902

[5] H Masur, S Tabachnikov, Rational billiards and flat structures, from: "Handbook of dynamical systems, Volume 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 1015

[6] T Monteil, On the finite blocking property, Ann. Inst. Fourier (Grenoble) 55 (2005) 1195

[7] T Monteil, Finite blocking property versus pure periodicity, Ergodic Theory Dynam. Systems 29 (2009) 983

[8] J O’Rourke, O Petrovici, Narrowing light rays with mirrors, from: "Proceedings of the 13th Canadian Conference on Computational Geometry" (2001) 137

[9] J Smillie, B Weiss, Finiteness results for flat surfaces: a survey and problem list, from: "Partially hyperbolic dynamics, laminations, and Teichmüller flow" (editors G Forni, M Lyubich, C Pugh, M Shub), Fields Inst. Commun. 51, Amer. Math. Soc. (2007) 125

[10] J Smillie, B Weiss, Characterizations of lattice surfaces, Invent. Math. 180 (2010) 535

[11] G W Tokarsky, Polygonal rooms not illuminable from every point, Amer. Math. Monthly 102 (1995) 867

[12] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553

[13] W A Veech, Geometric realizations of hyperelliptic curves, from: "Algorithms, fractals, and dynamics" (editor Y Takahashi), Plenum (1995) 217

[14] Y B Vorobets, Plane structures and billiards in rational polygons : the Veech alternative, Uspekhi Mat. Nauk 51 (1996) 3

[15] A Wright, The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol. 18 (2014) 1323

[16] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413

[17] J C Yoccoz, Interval exchange maps and translation surfaces, from: "Homogeneous flows, moduli spaces and arithmetic" (editors M L Einsiedler, D A Ellwood, A Eskin, D Kleinbock, E Lindenstrauss, G Margulis, S Marmi, J C Yoccoz), Clay Math. Proc. 10, Amer. Math. Soc. (2010) 1

[18] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :