Higher laminations and affine buildings
Geometry & topology, Tome 20 (2016) no. 3, pp. 1673-1735.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a Thurston-like definition for laminations on higher Teichmüller spaces associated to a surface S and a semi-simple group G for G = SLm or PGLm. The case G = SL2 or PGL2 corresponds to the classical theory of laminations on a hyperbolic surface. Our construction involves positive configurations of points in the affine building. We show that these laminations are parametrized by the tropical points of the spaces XG,S and AG,S of Fock and Goncharov. Finally, we explain how the space of projective laminations gives a compactification of higher Teichmüller space.

DOI : 10.2140/gt.2016.20.1673
Classification : 22E40
Keywords: higher Teichmüller theory, compactifications, tropical points, laminations, buildings, flag variety, affine Grassmannian

Le, Ian 1

1 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Room 208C, Chicago, IL 60637, USA
@article{GT_2016_20_3_a9,
     author = {Le, Ian},
     title = {Higher laminations and affine buildings},
     journal = {Geometry & topology},
     pages = {1673--1735},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     doi = {10.2140/gt.2016.20.1673},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1673/}
}
TY  - JOUR
AU  - Le, Ian
TI  - Higher laminations and affine buildings
JO  - Geometry & topology
PY  - 2016
SP  - 1673
EP  - 1735
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1673/
DO  - 10.2140/gt.2016.20.1673
ID  - GT_2016_20_3_a9
ER  - 
%0 Journal Article
%A Le, Ian
%T Higher laminations and affine buildings
%J Geometry & topology
%D 2016
%P 1673-1735
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1673/
%R 10.2140/gt.2016.20.1673
%F GT_2016_20_3_a9
Le, Ian. Higher laminations and affine buildings. Geometry & topology, Tome 20 (2016) no. 3, pp. 1673-1735. doi : 10.2140/gt.2016.20.1673. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1673/

[1] D Alessandrini, Tropicalization of group representations, Algebr. Geom. Topol. 8 (2008) 279

[2] D Alessandrini, Logarithmic limit sets of real semi-algebraic sets, Adv. Geom. 13 (2013) 155

[3] G M Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971) 459

[4] R Bieri, J R J Groves, The geometry of the set of characters induced by valuations, J. Reine Angew. Math. 347 (1984) 168

[5] T Bridgeland, I Smith, Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015) 155

[6] D Cartwright, M Häbich, B Sturmfels, A Werner, Mustafin varieties, Selecta Math. 17 (2011) 757

[7] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006) 1

[8] V V Fock, A B Goncharov, Dual Teichmüller and lamination spaces, from: "Handbook of Teichmüller theory, Volume I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 647

[9] V V Fock, A B Goncharov, Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009) 865

[10] V V Fock, A B Goncharov, Cluster X–varieties at infinity, preprint (2015)

[11] B Fontaine, J Kamnitzer, G Kuperberg, Buildings, spiders, and geometric Satake, Compos. Math. 149 (2013) 1871

[12] D Gaiotto, G W Moore, A Neitzke, Spectral networks, Ann. Henri Poincaré 14 (2013) 1643

[13] A Goncharov, L Shen, Geometry of canonical bases and mirror symmetry, Invent. Math. 202 (2015) 487

[14] M Gross, P Hacking, S Keel, M Kontsevich, Canonical bases for cluster algebras, preprint (2014)

[15] W Gubler, A guide to tropicalizations, from: "Algebraic and combinatorial aspects of tropical geometry" (editors E Brugallé, M A Cueto, A Dickenstein, E M Feichtner, I Itenberg), Contemp. Math. 589, Amer. Math. Soc. (2013) 125

[16] N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449

[17] M Joswig, B Sturmfels, J Yu, Affine buildings and tropical convexity, Albanian J. Math. 1 (2007) 187

[18] J Kamnitzer, Hives and the fibres of the convolution morphism, Selecta Math. 13 (2007) 483

[19] L Katzarkov, A Noll, P Pandit, C Simpson, Harmonic maps to buildings and singular perturbation theory, Comm. Math. Phys. 336 (2015) 853

[20] T Lam, P Pylyavskyy, Total positivity in loop groups, I : Whirls and curls, Adv. Math. 230 (2012) 1222

[21] I Le, Weyl group actions, mapping class groups, and automorphisms of cluster algebras,

[22] G Lusztig, Total positivity in reductive groups, from: "Lie theory and geometry" (editors J L Brylinski, R Brylinski, V Guillemin, V Kac), Progr. Math. 123, Birkhäuser (1994) 531

[23] G Lusztig, Total positivity and canonical bases, from: "Algebraic groups and Lie groups" (editors G Lehrer, A L Carey, J B Carrell, M K Murray, T A Springer), Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press (1997) 281

[24] D Maclagan, B Sturmfels, Introduction to tropical geometry, 161, Amer. Math. Soc. (2015)

[25] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401

[26] A Parreau, Compactification d’espaces de représentations de groupes de type fini, Math. Z. 272 (2012) 51

[27] S Payne, Fibers of tropicalization, Math. Z. 262 (2009) 301

[28] D Speyer, L Williams, The tropical totally positive Grassmannian, J. Algebraic Combin. 22 (2005) 189

Cité par Sources :