Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper gives sharp linear bounds on the genus of a normal surface in a triangulated compact orientable 3–manifold in terms of the quadrilaterals in its cell decomposition — different bounds arise from varying hypotheses on the surface or triangulation. Two applications of these bounds are given. First, the minimal triangulations of the product of a closed surface and the closed interval are determined. Second, an alternative approach to the realisation problem using normal surface theory is shown to be less powerful than its dual method using subcomplexes of polytopes.
Jaco, William 1 ; Johnson, Jesse 2 ; Spreer, Jonathan 3 ; Tillmann, Stephan 4
@article{GT_2016_20_3_a8, author = {Jaco, William and Johnson, Jesse and Spreer, Jonathan and Tillmann, Stephan}, title = {Bounds for the genus of a normal surface}, journal = {Geometry & topology}, pages = {1625--1671}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, doi = {10.2140/gt.2016.20.1625}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1625/} }
TY - JOUR AU - Jaco, William AU - Johnson, Jesse AU - Spreer, Jonathan AU - Tillmann, Stephan TI - Bounds for the genus of a normal surface JO - Geometry & topology PY - 2016 SP - 1625 EP - 1671 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1625/ DO - 10.2140/gt.2016.20.1625 ID - GT_2016_20_3_a8 ER -
%0 Journal Article %A Jaco, William %A Johnson, Jesse %A Spreer, Jonathan %A Tillmann, Stephan %T Bounds for the genus of a normal surface %J Geometry & topology %D 2016 %P 1625-1671 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1625/ %R 10.2140/gt.2016.20.1625 %F GT_2016_20_3_a8
Jaco, William; Johnson, Jesse; Spreer, Jonathan; Tillmann, Stephan. Bounds for the genus of a normal surface. Geometry & topology, Tome 20 (2016) no. 3, pp. 1625-1671. doi : 10.2140/gt.2016.20.1625. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1625/
[1] Polyhedral realization in R3 of triangulations of the torus and 2–manifolds in cyclic 4–polytopes, Discrete Math. 1 (1971/1972) 211
,[2] Combinatorial 3–manifolds with few vertices, J. Combinatorial Theory Ser. A 16 (1974) 165
,[3] How to exhibit toroidal maps in space, Discrete Comput. Geom. 38 (2007) 573
, , ,[4] On heuristic methods for finding realizations of surfaces, from: "Discrete differential geometry" (editors A I Bobenko, P Schröder, J M Sullivan, G M Ziegler), Oberwolfach Semin. 38, Birkhäuser (2008) 255
,[5] A new polyhedron of genus 3 with 10 vertices, from: "Intuitive geometry" (editors K Böröczky, G Fejes Tóth), Colloq. Math. Soc. János Bolyai 48, North-Holland (1987) 105
, ,[6] Toutes les réalisations du tore de Möbius avec sept sommets, Structural Topology (1991) 59
, ,[7] The simplicial volume of 3–manifolds with boundary, J. Topol. 8 (2015) 457
, , ,[8] Face pairing graphs and 3–manifold enumeration, J. Knot Theory Ramifications 13 (2004) 1057
,[9] Enumeration of non-orientable 3–manifolds using face-pairing graphs and union-find, Discrete Comput. Geom. 38 (2007) 527
,[10] Regina : Software for 3–manifold topology and normal surface theory
, , ,[11] Computing closed essential surfaces in knot complements, from: "Computational geometry", ACM (2013) 405
, , ,[12] A tree traversal algorithm for decision problems in knot theory and 3–manifold topology, Algorithmica 65 (2013) 772
, ,[13] Computational Topology and Normal Surfaces: Theoretical and Experimental Complexity Bounds, from: "Proceedings of the Meeting on Algorithm Engineering Expermiments", SIAM (2013) 78
, , ,[14] The Thurston norm via normal surfaces, Pacific J. Math. 239 (2009) 1
, ,[15] A polyhedron without diagonals, Acta Univ. Szeged. Sect. Sci. Math. 13 (1949) 140
,[16] Geometric embedding of complexes, Amer. Math. Monthly 77 (1970) 597
,[17] simpcomp
, ,[18] Complexity and Heegaard genus of an infinite class of compact 3–manifolds, Pacific J. Math. 210 (2003) 283
, , ,[19] Convex polytopes, 221, Springer (2003)
,[20] Theorie der Normalflächen, Acta Math. 105 (1961) 245
,[21] Über das Homöomorphieproblem der 3–Mannigfaltigkeiten, I, Math. Z. 80 (1962) 89
,[22] The computational complexity of knot and link problems, J. ACM 46 (1999) 185
, , ,[23] On the classification of homeomorphisms of 2–manifolds and the classification of 3–manifolds, Acta Math. 142 (1979) 123
,[24] Surface realization with the intersection segment functional, Experiment. Math. 19 (2010) 79
, , ,[25] An algorithm to decide if a 3–manifold is a Haken manifold, Topology 23 (1984) 195
, ,[26] Minimal triangulations for an infinite family of lens spaces, J. Topol. 2 (2009) 157
, , ,[27] 0–efficient triangulations of 3–manifolds, J. Differential Geom. 65 (2003) 61
, ,[28] Inflations of ideal triangulations, Adv. Math. 267 (2014) 176
, ,[29] Coverings and minimal triangulations of 3–manifolds, Algebr. Geom. Topol. 11 (2011) 1257
, , ,[30] Euler characteristic and quadrilaterals of normal surfaces, Proc. Indian Acad. Sci. Math. Sci. 118 (2008) 227
,[31] Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresber. Dtsch. Math.-Ver. 38 (1929) 248
,[32] A new combinatorial class of 3–manifold triangulations, preprint (2015)
, ,[33] The Manifold Page, electronic resource
,[34] Enumeration and random realization of triangulated surfaces, from: "Discrete differential geometry" (editors A I Bobenko, P Schröder, J M Sullivan, G M Ziegler), Oberwolfach Semin. 38, Birkhäuser (2008) 235
,[35] Complexity theory of three-dimensional manifolds, Acta Appl. Math. 19 (1990) 101
,[36] Algorithmic topology and classification of 3–manifolds, 9, Springer (2003)
,[37] Polyhedral 2–manifolds in E3 with unusually large genus, Israel J. Math. 46 (1983) 127
, , ,[38] Map color theorem, 209, Springer (1974)
,[39] An algorithm to recognize the 3–sphere, from: "Proceedings of the International Congress of Mathematicians, Volume 1" (editor S D Chatterji), Birkhäuser (1995) 601
,[40] Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1
,[41] Nonrealizable minimal vertex triangulations of surfaces: showing nonrealizability using oriented matroids and satisfiability solvers, Discrete Comput. Geom. 43 (2010) 289
,[42] Normal surfaces as combinatorial slicings, Discrete Math. 311 (2011) 1295
,[43] Über die Eulerschen Polyederrelationen, Arch. der Math. u. Phys. 11 (1906) 86
,[44] Thin position and the recognition problem for S3, Math. Res. Lett. 1 (1994) 613
,[45] Normal surfaces in topologically finite 3–manifolds, Enseign. Math. 54 (2008) 329
,[46] Normal surface Q–theory, Pacific J. Math. 183 (1998) 359
,[47] Exact values of the complexity of Paoluzzi–Zimmermann manifolds, Dokl. Akad. Nauk 439 (2011) 727
, ,[48] Polyhedral surfaces of high genus, from: "Discrete differential geometry" (editors A I Bobenko, P Schröder, J M Sullivan, G M Ziegler), Oberwolfach Semin. 38, Birkhäuser (2008) 191
,Cité par Sources :