The strong Kervaire invariant problem in dimension 62
Geometry & topology, Tome 20 (2016) no. 3, pp. 1611-1624.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using a Toda bracket computation θ4,2,σ2 due to Daniel C Isaksen, we investigate the 45–stem more thoroughly. We prove that θ42 = 0 using a 4–fold Toda bracket. By work of Barratt, Jones and Mahowald, this implies that θ5 exists and there exists a θ5 such that 2θ5 = 0. Based on θ42 = 0, we simplify significantly their 9–cell complex construction to a 4–cell complex, which leads to another proof that θ5 exists.

DOI : 10.2140/gt.2016.20.1611
Classification : 55Q45
Keywords: Kervaire invariant, Toda brackets

Xu, Zhouli 1

1 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Room 208C, Chicago, IL 60637, USA
@article{GT_2016_20_3_a7,
     author = {Xu, Zhouli},
     title = {The strong {Kervaire} invariant problem in dimension 62},
     journal = {Geometry & topology},
     pages = {1611--1624},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     doi = {10.2140/gt.2016.20.1611},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1611/}
}
TY  - JOUR
AU  - Xu, Zhouli
TI  - The strong Kervaire invariant problem in dimension 62
JO  - Geometry & topology
PY  - 2016
SP  - 1611
EP  - 1624
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1611/
DO  - 10.2140/gt.2016.20.1611
ID  - GT_2016_20_3_a7
ER  - 
%0 Journal Article
%A Xu, Zhouli
%T The strong Kervaire invariant problem in dimension 62
%J Geometry & topology
%D 2016
%P 1611-1624
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1611/
%R 10.2140/gt.2016.20.1611
%F GT_2016_20_3_a7
Xu, Zhouli. The strong Kervaire invariant problem in dimension 62. Geometry & topology, Tome 20 (2016) no. 3, pp. 1611-1624. doi : 10.2140/gt.2016.20.1611. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1611/

[1] M G Barratt, J D S Jones, M E Mahowald, The Kervaire invariant problem, from: "Proceedings of the Northwestern Homotopy Theory Conference" (editors H R Miller, S B Priddy), Contemp. Math. 19, Amer. Math. Soc. (1983) 9

[2] M G Barratt, J D S Jones, M E Mahowald, Relations amongst Toda brackets and the Kervaire invariant in dimension 62, J. London Math. Soc. 30 (1984) 533

[3] M G Barratt, M E Mahowald, M C Tangora, Some differentials in the Adams spectral sequence, II, Topology 9 (1970) 309

[4] T Bauer, Computation of the homotopy of the spectrum tmf, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13 (2008) 11

[5] W Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. 90 (1969) 157

[6] A Henriques, The homotopy groups of tmf and of its localizations, electronic notes (2007)

[7] M A Hill, M J Hopkins, D C Ravenel, On the non-existence of elements of Kervaire invariant one, preprint (2009)

[8] D C Isaksen, Classical and motivic Adams charts, preprint (2014)

[9] D C Isaksen, Stable stems, preprint (2014)

[10] S O Kochman, Stable homotopy groups of spheres: a computer-assisted approach, 1423, Springer (1990)

[11] S O Kochman, Bordism, stable homotopy and Adams spectral sequences, 7, Amer. Math. Soc. (1996)

[12] W H Lin, A proof of the strong Kervaire invariant in dimension 62, from: "First International Congress of Chinese Mathematicians" (editors L Yang, S T Yau), AMS/IP Stud. Adv. Math. 20, Amer. Math. Soc. (2001) 351

[13] M Mahowald, M Tangora, Some differentials in the Adams spectral sequence, Topology 6 (1967) 349

[14] R J Milgram, Symmetries and operations in homotopy theory, from: "Algebraic topology" (editor A Liulevicius), Proc. Sympos. Pure Math. 22, Amer. Math. Soc. (1971) 203

[15] R E Mosher, M C Tangora, Cohomology operations and applications in homotopy theory, Harper Row (1968)

[16] R M F Moss, Secondary compositions and the Adams spectral sequence, Math. Z. 115 (1970) 283

[17] F P Peterson, N Stein, Secondary cohomology operations: two formulas, Amer. J. Math. 81 (1959) 281

[18] M Tangora, Some extension questions in the Adams spectral sequence, from: "Proceedings of the Advanced Study Institute on Algebraic Topology, III", Various Publ. Ser 13, Math. Inst. Aarhus Univ. (1970) 578

Cité par Sources :