Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Lipschitz geometry of segments of the infinite Hamming cube is studied. Tight estimates on the distortion necessary to embed the segments into spaces of continuous functions on countable compact metric spaces are given. As an application, the first nontrivial lower bounds on the –distortion of important classes of separable Banach spaces, where is a countable compact space in the family are obtained.
Baudier, Florent 1 ; Freeman, Daniel 2 ; Schlumprecht, Thomas 3 ; Zsák, András 4
@article{GT_2016_20_3_a4, author = {Baudier, Florent and Freeman, Daniel and Schlumprecht, Thomas and Zs\'ak, Andr\'as}, title = {The metric geometry of the {Hamming} cube and applications}, journal = {Geometry & topology}, pages = {1427--1444}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, doi = {10.2140/gt.2016.20.1427}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1427/} }
TY - JOUR AU - Baudier, Florent AU - Freeman, Daniel AU - Schlumprecht, Thomas AU - Zsák, András TI - The metric geometry of the Hamming cube and applications JO - Geometry & topology PY - 2016 SP - 1427 EP - 1444 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1427/ DO - 10.2140/gt.2016.20.1427 ID - GT_2016_20_3_a4 ER -
%0 Journal Article %A Baudier, Florent %A Freeman, Daniel %A Schlumprecht, Thomas %A Zsák, András %T The metric geometry of the Hamming cube and applications %J Geometry & topology %D 2016 %P 1427-1444 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1427/ %R 10.2140/gt.2016.20.1427 %F GT_2016_20_3_a4
Baudier, Florent; Freeman, Daniel; Schlumprecht, Thomas; Zsák, András. The metric geometry of the Hamming cube and applications. Geometry & topology, Tome 20 (2016) no. 3, pp. 1427-1444. doi : 10.2140/gt.2016.20.1427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1427/
[1] Every separable metric space is Lipschitz equivalent to a subset of c0+, Israel J. Math. 19 (1974) 284
,[2] Topics in Banach space theory, 233, Springer (2006)
, ,[3] Remarques sur un article de Israel Aharoni sur les prolongements lipschitziens dans c0 (Israel J. Math. 19 (1974) 284–291), Israel J. Math. 31 (1978) 97
,[4] Zur Theorie der linearen Dimension, Stud. Math. 4 (1933) 100
, ,[5] The Szlenk index and operators on C(K)–spaces, Bull. Soc. Math. Belg. Sér. B 31 (1979) 87
,[6] Sur quelques points du calcul fonctionnel, Rend. Circ. Mat Palermo Math. 22 (1906) 1
,[7] Lipschitz-free Banach spaces, Studia Math. 159 (2003) 121
, ,[8] Best constants for Lipschitz embeddings of metric spaces into c0, Fund. Math. 199 (2008) 249
, ,[9] Ordinal indices in Banach spaces, Extracta Math. 19 (2004) 93
,[10] Embeddings into c0, Topology Appl. 57 (1994) 259
,[11] Low distortion embeddings into Asplund Banach spaces, preprint (2014)
, ,Cité par Sources :