On type-preserving representations of the four-punctured sphere group
Geometry & topology, Tome 20 (2016) no. 2, pp. 1213-1255.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give counterexamples to a question of Bowditch that asks whether a nonelementary type-preserving representation ρ: π1(Σg,n) PSL(2; ) of a punctured surface group that sends every nonperipheral simple closed curve to a hyperbolic element must ρ be Fuchsian. The counterexamples come from relative Euler class ± 1 representations of the four-punctured sphere group. We also show that the mapping class group action on each nonextremal component of the character space of type-preserving representations of the four-punctured sphere group is ergodic, which confirms a conjecture of Goldman for this case. The main tool we use are Kashaev and Penner’s lengths coordinates of the decorated character spaces.

DOI : 10.2140/gt.2016.20.1213
Classification : 57M05
Keywords: mapping class group, character variety, type-preserving representations, lengths coordinates

Yang, Tian 1

1 Department of Mathematics, Stanford University, Stanford, CA 94305, USA
@article{GT_2016_20_2_a9,
     author = {Yang, Tian},
     title = {On type-preserving representations of the four-punctured sphere group},
     journal = {Geometry & topology},
     pages = {1213--1255},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     doi = {10.2140/gt.2016.20.1213},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/}
}
TY  - JOUR
AU  - Yang, Tian
TI  - On type-preserving representations of the four-punctured sphere group
JO  - Geometry & topology
PY  - 2016
SP  - 1213
EP  - 1255
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/
DO  - 10.2140/gt.2016.20.1213
ID  - GT_2016_20_2_a9
ER  - 
%0 Journal Article
%A Yang, Tian
%T On type-preserving representations of the four-punctured sphere group
%J Geometry & topology
%D 2016
%P 1213-1255
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/
%R 10.2140/gt.2016.20.1213
%F GT_2016_20_2_a9
Yang, Tian. On type-preserving representations of the four-punctured sphere group. Geometry & topology, Tome 20 (2016) no. 2, pp. 1213-1255. doi : 10.2140/gt.2016.20.1213. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/

[1] F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233

[2] F Bonahon, Low-dimensional geometry: From Euclidean surfaces to hyperbolic knots, 49, Amer. Math. Soc. (2009)

[3] F Bonahon, H Wong, Quantum traces for representations of surface groups in SL2(C), Geom. Topol. 15 (2011) 1569

[4] B H Bowditch, Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. 77 (1998) 697

[5] R Delgado, Density properties of Euler characteristic-2 surface group, PSL(2, R) character varieties, PhD thesis, University of Maryland (2009)

[6] B Deroin, N Tholozan., Dominating surface group representations by Fuchsian ones, preprint (2013)

[7] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[8] R Fricke, F Klein, Vorlesungen über die Theorie der automorphen Funktionen, Vol. I, Johnson Reprint (1965)

[9] W M Goldman, Discontinuous groups and the Euler class, PhD thesis, Univ. California, Berkeley (1980)

[10] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200

[11] W M Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988) 557

[12] W M Goldman, Ergodic theory on moduli spaces, Ann. of Math. 146 (1997) 475

[13] W M Goldman, The modular group action on real SL(2)–characters of a one-holed torus, Geom. Topol. 7 (2003) 443

[14] W M Goldman, Mapping class group dynamics on surface group representations, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 189

[15] F Guéritaud, F Kassel, M Wolff, Compact anti-de Sitter 3–manifolds and folded hyperbolic structures on surfaces, preprint (2013)

[16] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[17] R M Kashaev, Coordinates for the moduli space of flat PSL(2, R)–connections, Math. Res. Lett. 12 (2005) 23

[18] R M Kashaev, On quantum moduli space of flat PSL2(R)–connections on a punctured surface, from: "Handbook of Teichmüller theory, Vol. I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 761

[19] L Keen, C Series, The Riley slice of Schottky space, Proc. London Math. Soc. 69 (1994) 72

[20] S Maloni, F Palesi, S P Tan, On the character varieties of the four-holed sphere

[21] J Marché, M Wolff, The modular action on PSL2(R)–characters in genus 2, Duke Math. J. 165 (2016) 371

[22] C C Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966) 154

[23] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

[24] R C Penner, Weil–Petersson volumes, J. Differential Geom. 35 (1992) 559

[25] J Roger, T Yang, The skein algebra of arcs and links and the decorated Teichmüller space, J. Differential Geom. 96 (2014) 95

Cité par Sources :