Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give counterexamples to a question of Bowditch that asks whether a nonelementary type-preserving representation of a punctured surface group that sends every nonperipheral simple closed curve to a hyperbolic element must be Fuchsian. The counterexamples come from relative Euler class representations of the four-punctured sphere group. We also show that the mapping class group action on each nonextremal component of the character space of type-preserving representations of the four-punctured sphere group is ergodic, which confirms a conjecture of Goldman for this case. The main tool we use are Kashaev and Penner’s lengths coordinates of the decorated character spaces.
Yang, Tian 1
@article{GT_2016_20_2_a9, author = {Yang, Tian}, title = {On type-preserving representations of the four-punctured sphere group}, journal = {Geometry & topology}, pages = {1213--1255}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, doi = {10.2140/gt.2016.20.1213}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/} }
TY - JOUR AU - Yang, Tian TI - On type-preserving representations of the four-punctured sphere group JO - Geometry & topology PY - 2016 SP - 1213 EP - 1255 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/ DO - 10.2140/gt.2016.20.1213 ID - GT_2016_20_2_a9 ER -
Yang, Tian. On type-preserving representations of the four-punctured sphere group. Geometry & topology, Tome 20 (2016) no. 2, pp. 1213-1255. doi : 10.2140/gt.2016.20.1213. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1213/
[1] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233
,[2] Low-dimensional geometry: From Euclidean surfaces to hyperbolic knots, 49, Amer. Math. Soc. (2009)
,[3] Quantum traces for representations of surface groups in SL2(C), Geom. Topol. 15 (2011) 1569
, ,[4] Markoff triples and quasi-Fuchsian groups, Proc. London Math. Soc. 77 (1998) 697
,[5] Density properties of Euler characteristic-2 surface group, PSL(2, R) character varieties, PhD thesis, University of Maryland (2009)
,[6] Dominating surface group representations by Fuchsian ones, preprint (2013)
, ,[7] A primer on mapping class groups, 49, Princeton Univ. Press (2012)
, ,[8] Vorlesungen über die Theorie der automorphen Funktionen, Vol. I, Johnson Reprint (1965)
, ,[9] Discontinuous groups and the Euler class, PhD thesis, Univ. California, Berkeley (1980)
,[10] The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200
,[11] Topological components of spaces of representations, Invent. Math. 93 (1988) 557
,[12] Ergodic theory on moduli spaces, Ann. of Math. 146 (1997) 475
,[13] The modular group action on real SL(2)–characters of a one-holed torus, Geom. Topol. 7 (2003) 443
,[14] Mapping class group dynamics on surface group representations, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 189
,[15] Compact anti-de Sitter 3–manifolds and folded hyperbolic structures on surfaces, preprint (2013)
, , ,[16] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157
,[17] Coordinates for the moduli space of flat PSL(2, R)–connections, Math. Res. Lett. 12 (2005) 23
,[18] On quantum moduli space of flat PSL2(R)–connections on a punctured surface, from: "Handbook of Teichmüller theory, Vol. I" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 11, Eur. Math. Soc. (2007) 761
,[19] The Riley slice of Schottky space, Proc. London Math. Soc. 69 (1994) 72
, ,[20] On the character varieties of the four-holed sphere
, , ,[21] The modular action on PSL2(R)–characters in genus 2, Duke Math. J. 165 (2016) 371
, ,[22] Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966) 154
,[23] The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299
,[24] Weil–Petersson volumes, J. Differential Geom. 35 (1992) 559
,[25] The skein algebra of arcs and links and the decorated Teichmüller space, J. Differential Geom. 96 (2014) 95
, ,Cité par Sources :