Cyclic group actions on contractible 4–manifolds
Geometry & topology, Tome 20 (2016) no. 2, pp. 1127-1155.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

There are known infinite families of Brieskorn homology 3–spheres which can be realized as boundaries of smooth contractible 4–manifolds. In this paper we show that smooth free periodic actions on these Brieskorn spheres do not extend smoothly over a contractible 4–manifold. We give a new infinite family of examples in which the actions extend locally linearly but not smoothly.

DOI : 10.2140/gt.2016.20.1127
Classification : 57M60, 57N13, 57R57, 57S17
Keywords: Brieskorn spheres, cyclic group actions, gauge theory

Anvari, Nima 1 ; Hambleton, Ian 2

1 Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton ON L8S 4K1, Canada
2 Department of Mathematics & Statistics, McMaster University, Hamilton ON L8S 4K1, Canada
@article{GT_2016_20_2_a7,
     author = {Anvari, Nima and Hambleton, Ian},
     title = {Cyclic group actions on contractible 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1127--1155},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     doi = {10.2140/gt.2016.20.1127},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1127/}
}
TY  - JOUR
AU  - Anvari, Nima
AU  - Hambleton, Ian
TI  - Cyclic group actions on contractible 4–manifolds
JO  - Geometry & topology
PY  - 2016
SP  - 1127
EP  - 1155
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1127/
DO  - 10.2140/gt.2016.20.1127
ID  - GT_2016_20_2_a7
ER  - 
%0 Journal Article
%A Anvari, Nima
%A Hambleton, Ian
%T Cyclic group actions on contractible 4–manifolds
%J Geometry & topology
%D 2016
%P 1127-1155
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1127/
%R 10.2140/gt.2016.20.1127
%F GT_2016_20_2_a7
Anvari, Nima; Hambleton, Ian. Cyclic group actions on contractible 4–manifolds. Geometry & topology, Tome 20 (2016) no. 2, pp. 1127-1155. doi : 10.2140/gt.2016.20.1127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1127/

[1] N Anvari, Extending smooth cyclic group actions on the Poincaré homology sphere, Pacific J. Math. 282 (2016) 9

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405

[3] E Bierstone, General position of equivariant maps, Trans. Amer. Math. Soc. 234 (1977) 447

[4] P J Braam, G Matić, The Smith conjecture in dimension four and equivariant gauge theory, Forum Math. 5 (1993) 299

[5] A J Casson, J L Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981) 23

[6] S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275

[7] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397

[8] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[9] A L Edmonds, Orientability of fixed point sets, Proc. Amer. Math. Soc. 82 (1981) 120

[10] A L Edmonds, Construction of group actions on four-manifolds, Trans. Amer. Math. Soc. 299 (1987) 155

[11] A L Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (1989) 109

[12] D Eisenbud, W Neumann, Three-dimensional link theory and invariants of plane curve singularities, 110, Princeton Univ. Press (1985)

[13] H C Fickle, Knots, Z–homology 3–spheres and contractible 4–manifolds, Houston J. Math. 10 (1984) 467

[14] R Fintushel, Circle actions on simply connected 4–manifolds, Trans. Amer. Math. Soc. 230 (1977) 147

[15] R Fintushel, R J Stern, Pseudofree orbifolds, Ann. of Math. 122 (1985) 335

[16] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. 61 (1990) 109

[17] R Fintushel, R J Stern, Homotopy K3 surfaces containing Σ(2,3,7), J. Differential Geom. 34 (1991) 255

[18] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[19] I Hambleton, R Lee, Perturbation of equivariant moduli spaces, Math. Ann. 293 (1992) 17

[20] I Hambleton, R Lee, Smooth group actions on definite 4–manifolds and moduli spaces, Duke Math. J. 78 (1995) 715

[21] I Hambleton, M Tanase, Permutations, isotropy and smooth cyclic group actions on definite 4–manifolds, Geom. Topol. 8 (2004) 475

[22] S Kwasik, T Lawson, Nonsmoothable Zp actions on contractible 4–manifolds, J. Reine Angew. Math. 437 (1993) 29

[23] S Kwasik, P Vogel, Asymmetric four-dimensional manifolds, Duke Math. J. 53 (1986) 759

[24] T Lawson, Invariants for families of Brieskorn varieties, Proc. Amer. Math. Soc. 99 (1987) 187

[25] E Luft, D Sjerve, On regular coverings of 3–manifolds by homology 3–spheres, Pacific J. Math. 152 (1992) 151

[26] W D Neumann, F Raymond, Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology" (editor K C Millett), Lecture Notes in Math. 664, Springer (1978) 163

[27] W D Neumann, D Zagier, A note on an invariant of Fintushel and Stern, from: "Geometry and topology" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer, Berlin (1985) 241

[28] K Ono, On a theorem of Edmonds, from: "Progress in differential geometry" (editor K Shiohama), Adv. Stud. Pure Math. 22, Math. Soc. Japan, Tokyo (1993) 243

[29] P Orlik, Seifert manifolds, 291, Springer (1972)

[30] N Saveliev, Invariants for homology 3–spheres, 140, Springer (2002)

[31] R J Stern, Some more Brieskorn spheres which bound contractible manifolds, Notices Amer. Math Soc. 25 (1978)

Cité par Sources :