Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Normal surface theory, a tool to represent surfaces in a triangulated 3–manifold combinatorially, is ubiquitous in computational 3–manifold theory. In this paper, we investigate a relaxed notion of normal surfaces where we remove the quadrilateral conditions. This yields normal surfaces that are no longer embedded. We prove that it is NP-hard to decide whether such a surface is immersed. Our proof uses a reduction from Boolean constraint satisfaction problems where every variable appears in at most two clauses, using a classification theorem of Feder. We also investigate variants, and provide a polynomial-time algorithm to test for a local version of this problem.
Burton, Benjamin 1 ; Colin de Verdière, Éric 2 ; de Mesmay, Arnaud 3
@article{GT_2016_20_2_a5, author = {Burton, Benjamin and Colin de Verdi\`ere, \'Eric and de Mesmay, Arnaud}, title = {On the complexity of immersed normal surfaces}, journal = {Geometry & topology}, pages = {1061--1083}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, doi = {10.2140/gt.2016.20.1061}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1061/} }
TY - JOUR AU - Burton, Benjamin AU - Colin de Verdière, Éric AU - de Mesmay, Arnaud TI - On the complexity of immersed normal surfaces JO - Geometry & topology PY - 2016 SP - 1061 EP - 1083 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1061/ DO - 10.2140/gt.2016.20.1061 ID - GT_2016_20_2_a5 ER -
%0 Journal Article %A Burton, Benjamin %A Colin de Verdière, Éric %A de Mesmay, Arnaud %T On the complexity of immersed normal surfaces %J Geometry & topology %D 2016 %P 1061-1083 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1061/ %R 10.2140/gt.2016.20.1061 %F GT_2016_20_2_a5
Burton, Benjamin; Colin de Verdière, Éric; de Mesmay, Arnaud. On the complexity of immersed normal surfaces. Geometry & topology, Tome 20 (2016) no. 2, pp. 1061-1083. doi : 10.2140/gt.2016.20.1061. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1061/
[1] The computational complexity of knot genus and spanning area, Trans. Amer. Math. Soc. 358 (2006) 3821
, , ,[2] Surfaces in the figure-8 knot complement, J. Knot Theory Ramifications 7 (1998) 1005
, , ,[3] Computational complexity: a modern approach, Cambridge Univ. Press (2009)
, ,[4] Parameterized complexity of discrete Morse theory, from: "Computational geometry", Association for Computing Machinery (2013) 127
, , , ,[5] The complexity of detecting taut angle structures on triangulations, from: "Proceedings of the 24th Annual ACM–SIAM Symposium on Discrete Algorithms", Society for Industrial and Applied Mathematics (2012) 168
, ,[6] Topological algorithms for graphs on surfaces, Habilitation thesis, École normale supérieure (2012)
,[7] Complexity classifications of Boolean constraint satisfaction problems, Society for Industrial and Applied Mathematics (2001)
, , ,[8] Generalized satisfiability with limited occurrences per variable: a study through delta-matroid parity, from: "Mathematical foundations of computer science" (editors B Rovan, P Vojtáš), Lecture Notes in Comput. Sci. 2747, Springer (2003) 358
, ,[9] Fanout limitations on constraint systems, Theoret. Comput. Sci. 255 (2001) 281
,[10] Parameterized complexity: new developments and research frontiers, from: "Aspects of complexity" (editors R Downey, D Hirschfeldt), de Gruyter Ser. Log. Appl. 4, de Gruyter (2001) 51
,[11] The theory of normal surfaces, lecture notes (2001)
,[12] Theorie der Normalflächen, Acta Math. 105 (1961) 245
,[13] The computational complexity of knot and link problems, J. ACM 46 (1999) 185
, , ,[14] Notes on basic 3–manifold topology, (2007)
,[15] Knottedness is in NP, modulo GRH, Adv. Math. 256 (2014) 493
,[16] Immersed normal surfaces and decision problems for 3–manifolds, PhD thesis, University of Michigan (1997)
,[17] Understanding and using linear programming, Springer (2007)
, ,[18] The regular projective solution space of the figure-eight knot complement, Experiment. Math. 9 (2000) 221
, ,[19] Affine structures in 3–manifolds, V : The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952) 96
,[20] Computing immersed normal surfaces in the figure-eight knot complement, Experiment. Math. 8 (1999) 73
,[21] The complexity of satisfiability problems, from: "Tenth Annual ACM Symposium on Theory of Computing", ACM (1978) 216
,[22] Combinatorial optimization : polyhedra and efficiency, Volume A, 24, Springer (2003)
,[23] Classical topology and combinatorial group theory, 72, Springer (1993)
,Cité par Sources :