Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
(1) We provide upper bounds on the size of the homology of a closed aspherical Riemannian manifold that only depend on the systole and the volume of balls. (2) We show that linear growth of mod Betti numbers or exponential growth of torsion homology imply that a closed aspherical manifold is “large”.
Sauer, Roman 1
@article{GT_2016_20_2_a4, author = {Sauer, Roman}, title = {Volume and homology growth of aspherical manifolds}, journal = {Geometry & topology}, pages = {1035--1059}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, doi = {10.2140/gt.2016.20.1035}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1035/} }
Sauer, Roman. Volume and homology growth of aspherical manifolds. Geometry & topology, Tome 20 (2016) no. 2, pp. 1035-1059. doi : 10.2140/gt.2016.20.1035. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1035/
[1] Rank gradient, cost of groups and the rank versus Heegaard genus problem, J. Eur. Math. Soc. (JEMS) 14 (2012) 1657
, ,[2] Manifolds of nonpositive curvature, 61, Birkhäuser (1985)
, , ,[3] The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013) 391
, ,[4] Introduction to compact transformation groups, 46, Academic Press (1972)
,[5] Methods of representation theory, I, Wiley (1981)
, ,[6] Torsion homology of arithmetic lattices and K2 of imaginary fields, Math. Z. 277 (2014) 1155
,[7] Homotopy type and volume of locally symmetric manifolds, Duke Math. J. 124 (2004) 459
,[8] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) 5
,[9] Large Riemannian manifolds, from: "Curvature and topology of Riemannian manifolds" (editors K Shiohama, T Sakai, T Sunada), Lecture Notes in Math. 1201, Springer (1986) 108
,[10] Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007)
,[11] Volumes of balls in large Riemannian manifolds, Ann. of Math. 173 (2011) 51
,[12] Algebraic topology, Cambridge Univ. Press (2002)
,[13] Large groups, property (τ) and the homology growth of subgroups, Math. Proc. Cambridge Philos. Soc. 146 (2009) 625
,[14] Detecting large groups, J. Algebra 324 (2010) 2636
,[15] L2–invariants : theory and applications to geometry and K–theory, 44, Springer (2002)
,[16] Approximating L2–invariants and homology growth, Geom. Funct. Anal. 23 (2013) 622
,[17] Ergodic theory of amenable group actions, I : The Rohlin lemma, Bull. Amer. Math. Soc. 2 (1980) 161
, ,[18] Amenable covers, volume and L2–Betti numbers of aspherical manifolds, J. Reine Angew. Math. 636 (2009) 47
,[19] Perfect forms and the Vandiver conjecture, J. Reine Angew. Math. 517 (1999) 209
,[20] Transformation groups, 8, de Gruyter (1987)
,[21] Monotileable amenable groups, from: "Topology, ergodic theory, real algebraic geometry" (editors V Turaev, A Vershik), Amer. Math. Soc. Transl. Ser. 2 202, Amer. Math. Soc. (2001) 257
,Cité par Sources :