Kontsevich’s Swiss cheese conjecture
Geometry & topology, Tome 20 (2016) no. 1, pp. 1-48.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a conjecture of Kontsevich, which states that if A is an Ed 1 algebra then the Hochschild cochain object of A is the universal Ed algebra acting on A. The notion of an Ed algebra acting on an Ed1 algebra was defined by Kontsevich using the Swiss cheese operad of Voronov. The degree 0 and 1 pieces of the Swiss cheese operad can be used to build a cofibrant model for A as an Ed1A–module. The theorem amounts to the fact that the Swiss cheese operad is generated up to homotopy by its degree 0 and 1 pieces.

DOI : 10.2140/gt.2016.20.1
Classification : 13D03, 18D50, 18G55
Keywords: operads, Hochschild cohomology, $E_n$ algebras, Swiss cheese, Deligne's conjecture

Thomas, Justin 1

1 404 23rd Ave NE, Norman, OK 73071, USA, Department of Mathematics, University of Notre Dame, 255 Hurley Hall, Notre Dame, IN 46556-4618, USA
@article{GT_2016_20_1_a0,
     author = {Thomas, Justin},
     title = {Kontsevich{\textquoteright}s {Swiss} cheese conjecture},
     journal = {Geometry & topology},
     pages = {1--48},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     doi = {10.2140/gt.2016.20.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1/}
}
TY  - JOUR
AU  - Thomas, Justin
TI  - Kontsevich’s Swiss cheese conjecture
JO  - Geometry & topology
PY  - 2016
SP  - 1
EP  - 48
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1/
DO  - 10.2140/gt.2016.20.1
ID  - GT_2016_20_1_a0
ER  - 
%0 Journal Article
%A Thomas, Justin
%T Kontsevich’s Swiss cheese conjecture
%J Geometry & topology
%D 2016
%P 1-48
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1/
%R 10.2140/gt.2016.20.1
%F GT_2016_20_1_a0
Thomas, Justin. Kontsevich’s Swiss cheese conjecture. Geometry & topology, Tome 20 (2016) no. 1, pp. 1-48. doi : 10.2140/gt.2016.20.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2016.20.1/

[1] M A Batanin, C Berger, The lattice path operad and Hochschild cochains, from: "Alpine perspectives on algebraic topology" (editors C Ausoni, K Hess, J Scherer), Contemp. Math. 504, Amer. Math. Soc. (2009) 23

[2] C Berger, B Fresse, Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004) 135

[3] C Berger, I Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78 (2003) 805

[4] C Berger, I Moerdijk, The Boardman–Vogt resolution of operads in monoidal model categories, Topology 45 (2006) 807

[5] C Berger, I Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, from: "Categories in algebra, geometry and mathematical physics" (editors A Davydov, M Batanin, M Johnson, S Lack, A Neeman), Contemp. Math. 431, Amer. Math. Soc. (2007) 31

[6] J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, 347, Springer (1973)

[7] F R Cohen, The homology of Cn+1–spaces, n ≥ 0, 533, Springer (1976)

[8] K Costello, The A∞ operad and the moduli space of curves, preprint (2004)

[9] V A Dolgushev, D E Tamarkin, B L Tsygan, Proof of Swiss cheese version of Deligne’s conjecture, Int. Math. Res. Not. 2011 (2011) 4666

[10] M Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963) 267

[11] E Getzler, Operads revisited, from: "Algebra, arithmetic, and geometry : in honor of Yu I Manin, I" (editors Y Tschinkel, Y Zarhin), Progr. Math. 269, Birkhäuser (2009) 675

[12] J E Harper, Homotopy theory of modules over operads and non-Σ operads in monoidal model categories, J. Pure Appl. Algebra 214 (2010) 1407

[13] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[14] R M Kaufmann, A proof of a cyclic version of Deligne’s conjecture via cacti, Math. Res. Lett. 15 (2008) 901

[15] R M Kaufmann, R Schwell, Associahedra, cyclohedra and a topological solution to the A∞ Deligne conjecture, Adv. Math. 223 (2010) 2166

[16] M Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35

[17] M Kontsevich, Y Soibelman, Deformations of algebras over operads and the Deligne conjecture, from: "Conférence Moshé Flato 1999, I" (editors G Dito, D Sternheimer), Math. Phys. Stud. 21, Kluwer (2000) 255

[18] J Lurie, Higher algebra, preprint (2014)

[19] J E Mcclure, J H Smith, A solution of Deligne’s Hochschild cohomology conjecture, from: "Recent progress in homotopy theory" (editors D M Davis, J Morava, G Nishida, W S Wilson, N Yagita), Contemp. Math. 293, Amer. Math. Soc. (2002) 153

[20] D P Sinha, The (non-equivariant) homology of the little disks operad, from: "Operads 2009" (editors J L Loday, B Vallette), Sémin. Congr. 26, Soc. Math. France, Paris (2013) 253

[21] M Spitzweck, Operads, algebras and modules in general model categories, preprint (2001)

[22] D E Tamarkin, Operadic proof of M Kontsevich’s formality theorem, PhD thesis, The Pennsylvania State University (1999)

[23] J Thomas, Forests and the W construction, preprint (2012)

[24] B Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. Reine Angew. Math. 620 (2008) 105

[25] A A Voronov, The Swiss-cheese operad, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 365

[26] A A Voronov, Homotopy Gerstenhaber algebras, from: "Conférence Moshé Flato 1999, II" (editors G Dito, D Sternheimer), Math. Phys. Stud. 22, Kluwer (2000) 307

Cité par Sources :