Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give sharp upper bounds on the maximal injectivity radius of finite-area hyperbolic surfaces and use them, for each , to identify a constant such that the set of closed genus- hyperbolic surfaces with maximal injectivity radius at least is compact if and only if . The main tool is a version of the centered dual complex that we introduced earlier, a coarsening of the Delaunay complex. In particular, we bound the area of a compact centered dual two-cell below given lower bounds on its side lengths.
DeBlois, Jason 1
@article{GT_2015_19_2_a3, author = {DeBlois, Jason}, title = {The centered dual and the maximal injectivity radius of hyperbolic surfaces}, journal = {Geometry & topology}, pages = {953--1014}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, doi = {10.2140/gt.2015.19.953}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.953/} }
TY - JOUR AU - DeBlois, Jason TI - The centered dual and the maximal injectivity radius of hyperbolic surfaces JO - Geometry & topology PY - 2015 SP - 953 EP - 1014 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.953/ DO - 10.2140/gt.2015.19.953 ID - GT_2015_19_2_a3 ER -
DeBlois, Jason. The centered dual and the maximal injectivity radius of hyperbolic surfaces. Geometry & topology, Tome 19 (2015) no. 2, pp. 953-1014. doi : 10.2140/gt.2015.19.953. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.953/
[1] Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math. 5 (1996) 191
,[2] Lectures on hyperbolic geometry, Springer (1992)
, ,[3] Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32 (1978) 243
,[4] Triangulations: Structures for algorithms and applications, Algorithms and Computation in Mathematics 25, Springer (2010)
, , ,[5] The Delaunay tessellation in hyperbolic space,
,[6] Tessellations of hyperbolic surfaces,
,[7] The geometry of cyclic hyperbolic polygons, (2014)
,[8] A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012)
, ,[9] The smallest hyperbolic $3$–manifolds with totally geodesic boundary, J. Differential Geom. 34 (1991) 175
, ,[10] A remark on Mahler's compactness theorem, Proc. Amer. Math. Soc. 28 (1971) 289
,[11] An introduction to complex function theory, Springer (1991)
,[12] Small deformations of polygons and polyhedra, Trans. Amer. Math. Soc. 359 (2007) 2155
,[13] Well-centered triangulation, SIAM J. Sci. Comput. 31 (2009/10) 4497
, , , ,Cité par Sources :