Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
It is conjectured that, in the asymptotic expansion of the Kashaev invariant of a hyperbolic knot, the first coefficient is represented by the complex volume of the knot complement, and the second coefficient is represented by a constant multiple of the square root of the twisted Reidemeister torsion associated with the holonomy representation of the hyperbolic structure of the knot complement. In particular, this conjecture has been rigorously proved for some simple hyperbolic knots, for which the second coefficient is presented by a modification of the square root of the Hessian of the potential function of the hyperbolic structure of the knot complement.
In this paper, we define an invariant of a parametrized knot diagram as a modification of the Hessian of the potential function obtained from the parametrized knot diagram. Further, we show that this invariant is equal (up to sign) to a constant multiple of the twisted Reidemeister torsion for any two-bridge knot.
Ohtsuki, Tomotada 1 ; Takata, Toshie 2
@article{GT_2015_19_2_a2, author = {Ohtsuki, Tomotada and Takata, Toshie}, title = {On the {Kashaev} invariant and the twisted {Reidemeister} torsion of two-bridge knots}, journal = {Geometry & topology}, pages = {853--952}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, doi = {10.2140/gt.2015.19.853}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.853/} }
TY - JOUR AU - Ohtsuki, Tomotada AU - Takata, Toshie TI - On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots JO - Geometry & topology PY - 2015 SP - 853 EP - 952 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.853/ DO - 10.2140/gt.2015.19.853 ID - GT_2015_19_2_a2 ER -
%0 Journal Article %A Ohtsuki, Tomotada %A Takata, Toshie %T On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots %J Geometry & topology %D 2015 %P 853-952 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.853/ %R 10.2140/gt.2015.19.853 %F GT_2015_19_2_a2
Ohtsuki, Tomotada; Takata, Toshie. On the Kashaev invariant and the twisted Reidemeister torsion of two-bridge knots. Geometry & topology, Tome 19 (2015) no. 2, pp. 853-952. doi : 10.2140/gt.2015.19.853. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.853/
[1] Asymptotics of the quantum invariants for surgeries on the figure $8$ knot, J. Knot Theory Ramifications 15 (2006) 479
, ,[2] Knots, de Gruyter Studies in Math. 5, de Gruyter (1985)
, ,[3] The quantum content of the gluing equations, Geom. Topol. 17 (2013) 1253
, ,[4] Exact results for perturbative Chern–Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009) 363
, , , ,[5] Computational aspects in Reidemeister torsion and Chern–Simons theories, from: "Chern–Simons gauge theory: 20 years after" (editors J E Andersen, H U Boden, A Hahn, B Himpel), AMS/IP Stud. Adv. Math. 50, Amer. Math. Soc. (2011) 43
,[6] Nonabelian Reidemeister torsion for twist knots, J. Knot Theory Ramifications 18 (2009) 303
, , ,[7] Discrete Heisenberg–Weyl group and modular group, Lett. Math. Phys. 34 (1995) 249
,[8] Strongly coupled quantum discrete Liouville theory, I: Algebraic approach and duality, Comm. Math. Phys. 219 (2001) 199
, , ,[9] Three-dimensional quantum gravity, Chern–Simons theory, and the $A$–polynomial, Comm. Math. Phys. 255 (2005) 577
,[10] $\mathrm{SL}(2,\mathbb{C})$ Chern–Simons theory and the asymptotic behavior of the colored Jones polynomial, Lett. Math. Phys. 86 (2008) 79
, ,[11] Quantum dilogarithm as a $6j$–symbol, Modern Phys. Lett. A 9 (1994) 3757
,[12] A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409
,[13] The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269
,[14] The coloured Jones polynomial, the Chern–Simons invariant and the Reidemeister torsion of the figure-eight knot, J. Topol. 6 (2013) 193
,[15] The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85
, ,[16] Kashaev's conjecture and the Chern–Simons invariants of knots and links, Experiment. Math. 11 (2002) 427
, , , , ,[17] On the asymptotic expansion of the Kashaev invariant of the $5_2$ knot, preprint
,[18] On the asymptotic expansion of the Kashaev invariant of the hyperbolic knots with $7$ crossings, in preparation
,[19] Epimorphisms between $2$–bridge link groups, from: "The Zieschang Gedenkschrift" (editors M Boileau, M Scharlemann, R Weidmann), Geom. Topol. Monogr. 14 (2008) 417
, , ,[20] On the asymptotic expansion of the Kashaev invariant of the knots with $6$ crossings, preprint
, ,[21] Parabolic representations of knot groups, I, Proc. London Math. Soc. 24 (1972) 217
,[22] Nonabelian representations of $2$–bridge knot groups, Quart. J. Math. Oxford Ser. 35 (1984) 191
,[23] Algebra for Heckoid groups, Trans. Amer. Math. Soc. 334 (1992) 389
,[24] Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. 21 (1995) 393
, ,[25] Hyperbolic volume and the Jones polynomial
,[26] Twisted Alexander polynomials with the adjoint action for some classes of knots, J. Knot Theory Ramifications 23 (2014)
,[27] Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986) 97, 240
,[28] Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351
,[29] Analytic continuation of Chern–Simons theory, from: "Chern–Simons gauge theory: 20 years after" (editors J E Andersen, H U Boden, A Hahn, B Himpel), AMS/IP Stud. Adv. Math. 50, Amer. Math. Soc. (2011) 347
,[30] Quantum exponential function, Rev. Math. Phys. 12 (2000) 873
,[31] On the volume conjecture for hyperbolic knots,
,[32] From the Jones polynomial to the $A$–polynomial of hyperbolic knots, from: "Proceedings of the Winter Workshop of Topology/Workshop of Topology and Computer", Interdiscip. Inform. Sci. 9 (2003) 11
,[33] Quantum modular forms, from: "Quanta of maths" (editors E Blanchard, D Ellwood, M Khalkhali, M Marcolli, S Popa), Clay Math. Proc. 11, Amer. Math. Soc. (2010) 659
,Cité par Sources :