G2–instantons over asymptotically cylindrical manifolds
Geometry & topology, Tome 19 (2015) no. 1, pp. 61-111.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A concrete model for a 7–dimensional gauge theory under special holonomy is proposed, within the paradigm of Donaldson and Thomas, over the asymptotically cylindrical G2–manifolds provided by Kovalev’s solution to a noncompact version of the Calabi conjecture.

One obtains a solution to the G2–instanton equation from the associated Hermitian Yang–Mills problem, to which the methods of Simpson et al are applied, subject to a crucial asymptotic stability assumption over the “boundary at infinity”.

DOI : 10.2140/gt.2015.19.61
Classification : 53C07, 58J35, 53C29
Keywords: gauge theory, $G_2$–instantons

Sá Earp, Henrique 1

1 Imperial College London, London SW7 2AZ, UK, Universidade Estadual de Campinas (Unicamp), São Paulo, Brazil
@article{GT_2015_19_1_a1,
     author = {S\'a Earp, Henrique},
     title = {G2{\textendash}instantons over asymptotically cylindrical manifolds},
     journal = {Geometry & topology},
     pages = {61--111},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.61},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.61/}
}
TY  - JOUR
AU  - Sá Earp, Henrique
TI  - G2–instantons over asymptotically cylindrical manifolds
JO  - Geometry & topology
PY  - 2015
SP  - 61
EP  - 111
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.61/
DO  - 10.2140/gt.2015.19.61
ID  - GT_2015_19_1_a1
ER  - 
%0 Journal Article
%A Sá Earp, Henrique
%T G2–instantons over asymptotically cylindrical manifolds
%J Geometry & topology
%D 2015
%P 61-111
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.61/
%R 10.2140/gt.2015.19.61
%F GT_2015_19_1_a1
Sá Earp, Henrique. G2–instantons over asymptotically cylindrical manifolds. Geometry & topology, Tome 19 (2015) no. 1, pp. 61-111. doi : 10.2140/gt.2015.19.61. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.61/

[1] D Baraglia, G2 geometry and integrable systems, PhD thesis, University of Oxford (2009)

[2] W P Barth, Some properties of stable rank-2 vector bundles on Pn, Math. Ann. 226 (1977) 125

[3] W P Barth, K Hulek, C A M Peters, A Van De Ven, Compact complex surfaces, 4, Springer (2004)

[4] R L Bryant, Metrics with holonomy G2 or Spin(7), from: "Workshop Bonn 1984" (editors F Hirzebruch, J Schwermer, S Suter), Lecture Notes in Math. 1111, Springer (1985) 269

[5] R L Bryant, S M Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829

[6] M Buttler, The geometry of CR–manifolds, PhD thesis, University of Oxford (1999)

[7] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1

[8] S K Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231

[9] S K Donaldson, The approximation of instantons, Geom. Funct. Anal. 3 (1993) 179

[10] S K Donaldson, Floer homology groups in Yang–Mills theory, 147, Cambridge Univ. Press (2002)

[11] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[12] J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109

[13] M Fernández, A Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19

[14] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Springer (2001)

[15] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1994)

[16] A Grigoryan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom. 45 (1997) 33

[17] G Y Guo, Yang–Mills fields on cylindrical manifolds and holomorphic bundles, I, Comm. Math. Phys. 179 (1996) 737

[18] R S Hamilton, Harmonic maps of manifolds with boundary, 471, Springer (1975)

[19] D Huybrechts, Complex geometry, Springer (2005)

[20] M Jardim, Stable bundles on 3–fold hypersurfaces, Bull. Braz. Math. Soc. 38 (2007) 649

[21] M B Jardim, H N Sá Earp, Monad constructions of asymptotically stable bundles, in preparation

[22] D D Joyce, Compact manifolds with special holonomy, Oxford Univ. Press (2000)

[23] A Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125

[24] A Kovalev, From Fano threefolds to compact G2–manifolds, from: "Strings and geometry", Clay Math. Proc. 3, Amer. Math. Soc. (2004) 193

[25] J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974)

[26] J Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961) 577

[27] S Mukai, On the moduli space of bundles on K3 surfaces, I, from: "Vector bundles on algebraic varieties", Tata Inst. Fund. Res. Stud. Math. 11, Tata Inst. (1987) 341

[28] S Mukai, Fano 3–folds, from: "Complex projective geometry" (editors G Ellingsrud, C Peskine, G Sacchiero, S A Strømme), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press (1992) 255

[29] C Okonek, M Schneider, H Spindler, Vector bundles on complex projective spaces, 3, Birkhäuser (1980)

[30] W Rudin, Principles of mathematical analysis, McGraw–Hill (1976)

[31] H N Sá Earp, G2–instantons over asymptotically cylindrical manifolds,

[32] H N Sá Earp, G2–instantons over Kovalev manifolds, II, in preparation

[33] H N Sá Earp, Instantons on G2–manifolds, PhD thesis, Imperial College London (2009)

[34] S Salamon, Riemannian geometry and holonomy groups, 201, Longman (1989)

[35] C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867

[36] C H Taubes, Metrics, connections and gluing theorems, 89, Amer. Math. Soc. (1996)

[37] R Thomas, Gauge theory on Calabi–Yau manifolds, PhD thesis, Univeristy of Oxford (1997)

[38] T Walpuski, G2–instantons on generalised Kummer constructions, I, (2012)

Cité par Sources :