Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Bordered Heegaard Floer homology is a three-manifold invariant which associates to a surface an algebra and to a three-manifold with boundary identified with a module over . In this paper, we establish naturality properties of this invariant. Changing the diffeomorphism between and the boundary of tensors the bordered invariant with a suitable bimodule over . These bimodules give an action of a suitably based mapping class group on the category of modules over . The Hochschild homology of such a bimodule is identified with the knot Floer homology of the associated open book decomposition. In the course of establishing these results, we also calculate the homology of . We also prove a duality theorem relating the two versions of the –manifold invariant. Finally, in the case of a genus-one surface, we calculate the mapping class group action explicitly. This completes the description of bordered Heegaard Floer homology for knot complements in terms of the knot Floer homology.
Lipshitz, Robert 1 ; Ozsváth, Peter S 2 ; Thurston, Dylan P 3
@article{GT_2015_19_2_a0, author = {Lipshitz, Robert and Ozsv\'ath, Peter S and Thurston, Dylan P}, title = {Bimodules in bordered {Heegaard} {Floer} homology}, journal = {Geometry & topology}, pages = {525--724}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, doi = {10.2140/gt.2015.19.525}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.525/} }
TY - JOUR AU - Lipshitz, Robert AU - Ozsváth, Peter S AU - Thurston, Dylan P TI - Bimodules in bordered Heegaard Floer homology JO - Geometry & topology PY - 2015 SP - 525 EP - 724 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.525/ DO - 10.2140/gt.2015.19.525 ID - GT_2015_19_2_a0 ER -
%0 Journal Article %A Lipshitz, Robert %A Ozsváth, Peter S %A Thurston, Dylan P %T Bimodules in bordered Heegaard Floer homology %J Geometry & topology %D 2015 %P 525-724 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.525/ %R 10.2140/gt.2015.19.525 %F GT_2015_19_2_a0
Lipshitz, Robert; Ozsváth, Peter S; Thurston, Dylan P. Bimodules in bordered Heegaard Floer homology. Geometry & topology, Tome 19 (2015) no. 2, pp. 525-724. doi : 10.2140/gt.2015.19.525. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.525/
[1] Groupoid extensions of mapping class representations for bordered surfaces, Topology Appl. 156 (2009) 2713
, , ,[2] Higher-dimensional algebra, V: $2$–groups, Theory Appl. Categ. 12 (2004) 423
, ,[3] Introduction to bicategories, from: "Reports of the Midwest Category Seminar", Springer (1967) 1
,[4] A chord diagrammatic presentation of the mapping class group of a once bordered surface, Geom. Dedicata 144 (2010) 171
,[5] Equivariant sheaves and functors, Lecture Notes in Math. 1578, Springer (1994)
, ,[6] Bruhat order of Coxeter groups and shellability, Adv. in Math. 43 (1982) 87
, ,[7] Framed triangulated categories, Mat. Sb. 181 (1990) 669
, ,[8] Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103
,[9] Representation and character theory in $2$–categories, Adv. Math. 217 (2008) 2268
, ,[10] An introduction to contact topology, Cambridge Studies in Adv. Math. 109, Cambridge Univ. Press (2008)
,[11] A brief introduction to $A$–infinity algebras
,[12] Koszul duality and coderived categories (after K Lefévre)
,[13] Introduction to $A$–infinity algebras and modules, Homology Homotopy Appl. 3 (2001) 1
,[14] On differential graded categories, from: "International Congress of Mathematicians, Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 151
,[15] Link homology and categorification, from: "International Congress of Mathematicians, Vol. II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 989
,[16] Braid cobordisms, triangulated categories, and flag varieties, Homology Homotopy Appl. 9 (2007) 19
, ,[17] Homological algebra of mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. $1$, $2$" (editor S D Chatterji), Birkhäuser (1995) 120
,[18] Homological mirror symmetry and torus fibrations, from: "Symplectic geometry and mirror symmetry" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Scientific (2001) 203
, ,[19] Sur les $A_{\infty}$ catégories, PhD thesis, Université Denis Diderot (2003)
,[20] Computing $\widehat{\mathit{HF}}$ by factoring mapping classes,
, , ,[21] Bordered Heegaard Floer homology: Invariance and pairing, (2011)
, , ,[22] Heegaard Floer homology as morphism spaces, Quantum Topol. 2 (2011) 381
, , ,[23] A faithful linear-categorical action of the mapping class group of a surface with boundary, J. Eur. Math. Soc. $($JEMS$)$ 15 (2013) 1279
, , ,[24] The diagonal of the Stasheff polytope, from: "Higher structures in geometry and physics" (editors A S Cattaneo, A Giaquinto, P Xu), Progr. Math. 287, Springer (2011) 269
,[25] Categories for the working mathematician, Graduate Texts in Math. 5, Springer (1998)
,[26] Associahedra, cellular $W$–construction and products of $A_\infty$–algebras, Trans. Amer. Math. Soc. 358 (2006) 2353
, ,[27] Methods of graded rings, Lecture Notes in Math. 1836, Springer (2004)
, ,[28] Holomorphic disks and knot invariants, Adv. Math 186 (2004) 58
, ,[29] Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027
, ,[30] Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326
, ,[31] The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299
,[32] Koszul resolutions, Trans. AMS 152 (1970) 39
,[33] Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl. 6 (2004) 363
, ,[34] Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000) 103
,[35] Fukaya categories and deformations, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editor T Li), Higher Ed. Press (2002) 351
,[36] Fukaya categories and Picard–Lefschetz theory, Zurich Lectures in Advanced Math., Eur. Math. Soc. (2008)
,Cité par Sources :