Nonorientable surfaces in homology cobordisms
Geometry & topology, Tome 19 (2015) no. 1, pp. 439-494.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We investigate constraints on embeddings of a nonorientable surface in a 4–manifold with the homology of M × I, where M is a rational homology 3–sphere. The constraints take the form of inequalities involving the genus and normal Euler class of the surface, and either the Ozsváth–Szabó d–invariants or Atiyah–Singer ρ–invariants of M. One consequence is that the minimal genus of a smoothly embedded surface in L(2k,q) × I is the same as the minimal genus of a surface in L(2k,q). We also consider embeddings of nonorientable surfaces in closed 4–manifolds.

DOI : 10.2140/gt.2015.19.439
Classification : 57M27, 57R40, 57R58
Keywords: nonorientable surfaces, $4$–manifold, Heegaard Floer homology, Dedekind sums

Levine, Adam 1 ; Ruberman, Daniel 2 ; Strle, Sašo 3

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08540, USA
2 Department of Mathematics, Brandeis University, MS 050, Waltham, MA 02454, USA
3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia
@article{GT_2015_19_1_a9,
     author = {Levine, Adam and Ruberman, Daniel and Strle, Sa\v{s}o},
     title = {Nonorientable surfaces in homology cobordisms},
     journal = {Geometry & topology},
     pages = {439--494},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.439},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.439/}
}
TY  - JOUR
AU  - Levine, Adam
AU  - Ruberman, Daniel
AU  - Strle, Sašo
TI  - Nonorientable surfaces in homology cobordisms
JO  - Geometry & topology
PY  - 2015
SP  - 439
EP  - 494
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.439/
DO  - 10.2140/gt.2015.19.439
ID  - GT_2015_19_1_a9
ER  - 
%0 Journal Article
%A Levine, Adam
%A Ruberman, Daniel
%A Strle, Sašo
%T Nonorientable surfaces in homology cobordisms
%J Geometry & topology
%D 2015
%P 439-494
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.439/
%R 10.2140/gt.2015.19.439
%F GT_2015_19_1_a9
Levine, Adam; Ruberman, Daniel; Strle, Sašo. Nonorientable surfaces in homology cobordisms. Geometry & topology, Tome 19 (2015) no. 1, pp. 439-494. doi : 10.2140/gt.2015.19.439. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.439/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405

[2] M F Atiyah, I M Singer, The index of elliptic operators, III, Ann. of Math. 87 (1968) 546

[3] J Batson, Nonorientable four-ball genus can be arbitrarily large,

[4] M Beck, Geometric proofs of polynomial reciprocity laws of Carlitz, Berndt and Dieter, from: "Diophantine analysis and related fields 2006" (editors M Katsurada, T Komatsu, H Nakada), Sem. Math. Sci. 35, Keio Univ., Yokohama (2006) 11

[5] M Beck, C Haase, A R Matthews, Dedekind–Carlitz polynomials as lattice-point enumerators in rational polyhedra, Math. Ann. 341 (2008) 945

[6] M Beck, F Kohl, Rademacher–Carlitz polynomials, Acta Arith. 163 (2014) 379

[7] B C Berndt, U Dieter, Sums involving the greatest integer function and Riemann–Stieltjes integration, J. Reine Angew. Math. 337 (1982) 208

[8] G E Bredon, J W Wood, Nonorientable surfaces in orientable 3–manifolds, Invent. Math. 7 (1969) 83

[9] K S Brown, Cohomology of groups, 87, Springer (1994)

[10] D Calegari, C Gordon, Knots with small rational genus, Comment. Math. Helv. 88 (2013) 85

[11] L Carlitz, Some theorems on generalized Dedekind–Rademacher sums, Pacific J. Math. 75 (1978) 347

[12] A J Casson, C M Gordon, On slice knots in dimension three, from: "Algebraic and geometric topology, Part 2" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 39

[13] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progress in Math. 62, Birkhäuser (1986) 181

[14] R H Fox, Free differential calculus, I : Derivation in the free group ring, Ann. of Math. 57 (1953) 547

[15] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[16] M Furuta, Monopole equation and the –conjecture, Math. Res. Lett. 8 (2001) 279

[17] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[18] I M Gessel, Generating functions and generalized Dedekind sums, Electron. J. Combin. 4 (1997)

[19] P M Gilmer, Configurations of surfaces in 4–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353

[20] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999)

[21] C M Gordon, Knots, homology spheres, and contractible 4–manifolds, Topology 14 (1975) 151

[22] J E Greene, A S Levine, Strong Heegaard diagrams and strong L–spaces,

[23] L Guillou, A Marin, Une extension d’un théorème de Rohlin sur la signature, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 97

[24] M Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007) 2277

[25] M Hedden, On Floer homology and the Berge conjecture on knots admitting lens space surgeries, Trans. Amer. Math. Soc. 363 (2011) 949

[26] M Hedden, S G Kim, C Livingston, Topologically slice knots of smooth concordance order two,

[27] S Jabuka, S Robins, X Wang, Heegaard Floer correction terms and Dedekind–Rademacher sums, Int. Math. Res. Not. 2013 (2013) 170

[28] S J Kaplan, Constructing framed 4–manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979) 237

[29] P Kirk, E Klassen, D Ruberman, Splitting the spectral flow and the Alexander matrix, Comment. Math. Helv. 69 (1994) 375

[30] P Kronheimer, T Mrowka, P S Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457

[31] T Lawson, Normal bundles for an embedded RP2 in a positive definite 4–manifold, J. Differential Geom. 22 (1985) 215

[32] D A Lee, R Lipshitz, Covering spaces and Q–gradings on Heegaard Floer homology, J. Symplectic Geom. 6 (2008) 33

[33] A S Levine, S Lewallen, Strong L–spaces and left-orderability, Math. Res. Lett. 19 (2012) 1237

[34] A S Levine, D Ruberman, Generalized Heegaard Floer correction terms, to appear in Proceedings of Gökova Geometry-Topology Conference 2013

[35] B H Li, Generalization of the Whitney–Mahowald theorem, Trans. Amer. Math. Soc. 346 (1994) 511

[36] T Lidman, On the infinity flavor of Heegaard Floer homology and the integral cohomology ring, Comment. Math. Helv. 88 (2013) 875

[37] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357

[38] M Mahowald, On the normal bundle of a manifold, Pacific J. Math. 14 (1964) 1335

[39] W S Massey, Pontryagin squares in the Thom space of a bundle, Pacific J. Math. 31 (1969) 133

[40] W S Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143

[41] Y Matsumoto, An elementary proof of Rochlin’s signature theorem and its extension by Guillou and Marin, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 119

[42] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, 3, Amer. Math. Soc. (2007)

[43] R E Mosher, M C Tangora, Cohomology operations and applications in homotopy theory, Harper Row (1968)

[44] R E Mosher, M C Tangora, Kogomologicheskie operatsii i ikh prilozheniya v teorii gomotopii, Izdat. Mir (1970) 287

[45] Y Ni, Z Wu, Heegaard Floer correction terms and rational genus bounds, Adv. Math. 267 (2014) 360

[46] P Orlik, Seifert manifolds, 291, Springer (1972)

[47] P S Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[48] P S Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185

[49] P S Ozsváth, Z Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008) 101

[50] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds,

[51] M R Pettet, R Sitaramachandra Rao, Three-term relations for Hardy sums, J. Number Theory 25 (1987) 328

[52] L Pontryagin, Mappings of the three-dimensional sphere into an n–dimensional complex, C. R. (Doklady) Acad. Sci. URSS 34 (1942) 35

[53] M M Postnikov, The classification of continuous mappings of a three-dimensional polyhedron into a simply connected polyhedron of arbitrary dimension, Doklady Akad. Nauk SSSR 64 (1949) 461

[54] J Rasmussen, Lens space surgeries and L–space homology spheres,

[55] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[56] M Tange, Ozsváth–Szabó’s correction term and lens surgery, Math. Proc. Cambridge Philos. Soc. 146 (2009) 119

[57] V Turaev, A function on the homology of 3–manifolds, Algebr. Geom. Topol. 7 (2007) 135

[58] M Ue, On the intersection forms of spin 4–manifolds bounded by spherical 3–manifolds, Algebr. Geom. Topol. 1 (2001) 549

[59] J H C Whitehead, On the theory of obstructions, Ann. of Math. 54 (1951) 68

[60] H Whitney, On the topology of differentiable manifolds, from: "Lectures in Topology", Univ. of Michigan Press (1941) 101

Cité par Sources :