Cylinder deformations in orbit closures of translation surfaces
Geometry & topology, Tome 19 (2015) no. 1, pp. 413-438.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a translation surface. We show that certain deformations of M supported on the set of all cylinders in a given direction remain in the GL+(2, )–orbit closure of M. Applications are given concerning complete periodicity, affine field of definition and the number of parallel cylinders which may be found on a translation surface in a given orbit closure.

DOI : 10.2140/gt.2015.19.413
Classification : 32G15, 37D40
Keywords: Teichmüller dynamics, translation surface

Wright, Alex 1

1 Math Department, University of Chicago, 5734 South University Avenue 208C, Chicago, IL 60637, USA
@article{GT_2015_19_1_a8,
     author = {Wright, Alex},
     title = {Cylinder deformations in orbit closures of translation surfaces},
     journal = {Geometry & topology},
     pages = {413--438},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.413},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.413/}
}
TY  - JOUR
AU  - Wright, Alex
TI  - Cylinder deformations in orbit closures of translation surfaces
JO  - Geometry & topology
PY  - 2015
SP  - 413
EP  - 438
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.413/
DO  - 10.2140/gt.2015.19.413
ID  - GT_2015_19_1_a8
ER  - 
%0 Journal Article
%A Wright, Alex
%T Cylinder deformations in orbit closures of translation surfaces
%J Geometry & topology
%D 2015
%P 413-438
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.413/
%R 10.2140/gt.2015.19.413
%F GT_2015_19_1_a8
Wright, Alex. Cylinder deformations in orbit closures of translation surfaces. Geometry & topology, Tome 19 (2015) no. 1, pp. 413-438. doi : 10.2140/gt.2015.19.413. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.413/

[1] D Aulicino, D M Nguyen, A Wright, Classification of higher rank orbit closures in Hodd(4),

[2] A Avila, A Eskin, M Möller, Symplectic and isometric SL(2, R)–invariant subbundles of the Hodge bundle,

[3] I I Bouw, M Möller, Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math. 172 (2010) 139

[4] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871

[5] A Eskin, H Masur, Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems 21 (2001) 443

[6] A Eskin, M Mirzakhani, Invariant and stationary measures for the SL(2, R) action on moduli space,

[7] A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, R) action on moduli space,

[8] S Filip, Semisimplicity and rigidity of the Kontsevich–Zorich cocycle,

[9] S Filip, Splitting mixed Hodge structures over affine invariant manifolds,

[10] P Hubert, T A Schmidt, Invariants of translation surfaces, Ann. Inst. Fourier (Grenoble) 51 (2001) 461

[11] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995)

[12] R Kenyon, J Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000) 65

[13] E Lanneau, D M Nguyen, Complete periodicity of Prym eigenforms,

[14] H Masur, S Tabachnikov, Rational billiards and flat structures, from: "Handbook of dynamical systems, Vol. 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 1015

[15] C T Mcmullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857

[16] C T Mcmullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003) 191

[17] C T Mcmullen, Teichmüller curves in genus two : The decagon and beyond, J. Reine Angew. Math. 582 (2005) 173

[18] C T Mcmullen, Prym varieties and Teichmüller curves, Duke Math. J. 133 (2006) 569

[19] C T Mcmullen, Dynamics of SL2(R) over moduli space in genus two, Ann. of Math. 165 (2007) 397

[20] C Mcmullen, Cascades in the dynamics of measured foliations, preprint (2012)

[21] Y Minsky, B Weiss, Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math. 552 (2002) 131

[22] D M Nguyen, A Wright, Non-Veech surfaces in Hhyp(4) are generic, Geom. Funct. Anal. 24 (2014) 1316

[23] J Smillie, B Weiss, Minimal sets for flows on moduli space, Israel J. Math. 142 (2004) 249

[24] J Smillie, B Weiss, Finiteness results for flat surfaces: A survey and problem list, from: "Partially hyperbolic dynamics, laminations, and Teichmüller flow" (editors G Forni, M Lyubich, C Pugh, M Shub), Fields Inst. Commun. 51, Amer. Math. Soc. (2007) 125

[25] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553

[26] W A Veech, Siegel measures, Ann. of Math. 148 (1998) 895

[27] C C Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998) 1019

[28] A Wright, Schwarz triangle mappings and Teichmüller curves : the Veech–Ward–Bouw–Möller curves, Geom. Funct. Anal. 23 (2013) 776

[29] A Wright, The field of definition of affine invariant submanifolds of the moduli space of abelian differentials, Geom. Topol. 18 (2014) 1323

[30] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :