Pseudo-Anosov mapping classes not arising from Penner’s construction
Geometry & topology, Tome 19 (2015) no. 6, pp. 3645-3656.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that Galois conjugates of stretch factors of pseudo-Anosov mapping classes arising from Penner’s construction lie off the unit circle. As a consequence, we show that, for all but a few exceptional surfaces, there are examples of pseudo-Anosov mapping classes so that no power of them arises from Penner’s construction. This resolves a conjecture of Penner.

DOI : 10.2140/gt.2015.19.3645
Classification : 37E30, 57M99, 15A18, 11R32
Keywords: pseudo-Anosov, mapping class group, Penner's construction

Shin, Hyunshik 1 ; Strenner, Balázs 2

1 Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
2 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA
@article{GT_2015_19_6_a13,
     author = {Shin, Hyunshik and Strenner, Bal\'azs},
     title = {Pseudo-Anosov mapping classes not arising from {Penner{\textquoteright}s} construction},
     journal = {Geometry & topology},
     pages = {3645--3656},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3645},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3645/}
}
TY  - JOUR
AU  - Shin, Hyunshik
AU  - Strenner, Balázs
TI  - Pseudo-Anosov mapping classes not arising from Penner’s construction
JO  - Geometry & topology
PY  - 2015
SP  - 3645
EP  - 3656
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3645/
DO  - 10.2140/gt.2015.19.3645
ID  - GT_2015_19_6_a13
ER  - 
%0 Journal Article
%A Shin, Hyunshik
%A Strenner, Balázs
%T Pseudo-Anosov mapping classes not arising from Penner’s construction
%J Geometry & topology
%D 2015
%P 3645-3656
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3645/
%R 10.2140/gt.2015.19.3645
%F GT_2015_19_6_a13
Shin, Hyunshik; Strenner, Balázs. Pseudo-Anosov mapping classes not arising from Penner’s construction. Geometry & topology, Tome 19 (2015) no. 6, pp. 3645-3656. doi : 10.2140/gt.2015.19.3645. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3645/

[1] P Arnoux, J C Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 75

[2] M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361

[3] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1

[4] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988)

[5] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012)

[6] A Fathi, F Laudenbach, V Poenaru, editors, Travaux de Thurston sur les surfaces, Astérisque 66, Soc. Math. France (1979) 284

[7] E Hironaka, Small dilatation mapping classes coming from the simplest hyperbolic braid, Algebr. Geom. Topol. 10 (2010) 2041

[8] I Kra, On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981) 231

[9] E Lanneau, J L Thiffeault, On the minimum dilatation of braids on punctured discs, Geom. Dedicata 152 (2011) 165

[10] E Lanneau, J L Thiffeault, On the minimum dilatation of pseudo-Anosov homeromorphisms [sic] on surfaces of small genus, Ann. Inst. Fourier (Grenoble) 61 (2011) 105

[11] C J Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number, Geom. Topol. 8 (2004) 1301

[12] D D Long, Constructing pseudo-Anosov maps, from: "Knot theory and manifolds" (editor D Rolfsen), Lecture Notes in Math. 1144, Springer (1985) 108

[13] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179

[14] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443

[15] R C Penner, Probing mapping class groups using arcs, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 97

[16] H Shin, Algebraic degrees of stretch factors in mapping class groups, preprint (2015)

[17] B Strenner, Algebraic degrees and Galois conjugates of pseudo-Anosov stretch factors, preprint (2015)

[18] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417

[19] A Y Zhirov, On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus, Uspekhi Mat. Nauk 50 (1995) 197

Cité par Sources :