Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct Weil–Petersson geodesic rays with minimal filling non-uniquely ergodic ending lamination which are recurrent to a compact subset of the moduli space of Riemann surfaces. This construction shows that an analogue of Masur’s criterion for Teichmüller geodesics does not hold for Weil–Petersson geodesics.
Brock, Jeffrey 1 ; Modami, Babak 2
@article{GT_2015_19_6_a11, author = {Brock, Jeffrey and Modami, Babak}, title = {Recurrent {Weil{\textendash}Petersson} geodesic rays with non-uniquely ergodic ending laminations}, journal = {Geometry & topology}, pages = {3565--3601}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2015}, doi = {10.2140/gt.2015.19.3565}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/} }
TY - JOUR AU - Brock, Jeffrey AU - Modami, Babak TI - Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations JO - Geometry & topology PY - 2015 SP - 3565 EP - 3601 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/ DO - 10.2140/gt.2015.19.3565 ID - GT_2015_19_6_a11 ER -
%0 Journal Article %A Brock, Jeffrey %A Modami, Babak %T Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations %J Geometry & topology %D 2015 %P 3565-3601 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/ %R 10.2140/gt.2015.19.3565 %F GT_2015_19_6_a11
Brock, Jeffrey; Modami, Babak. Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations. Geometry & topology, Tome 19 (2015) no. 6, pp. 3565-3601. doi : 10.2140/gt.2015.19.3565. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/
[1] Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013) 2855
,[2] Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523
,[3] Geodesic laminations on surfaces, from: "Laminations and foliations in dynamics, geometry and topology" (editors M Lyubich, J W Milnor, Y N Minsky), Contemp. Math. 269, Amer. Math. Soc. (2001) 1
,[4] Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)
, ,[5] The Weil–Petersson metric and volumes of $3$–dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495
,[6] Coarse and synthetic Weil–Petersson geometry: Quasi-flats, geodesics and relative hyperbolicity, Geom. Topol. 12 (2008) 2453
, ,[7] Asymptotics of Weil–Petersson geodesic, I: Ending laminations, recurrence, and flows, Geom. Funct. Anal. 19 (2010) 1229
, , ,[8] Asymptotics of Weil–Petersson geodesics, II: Bounded geometry and unbounded entropy, Geom. Funct. Anal. 21 (2011) 820
, , ,[9] Geometry and spectra of compact Riemann surfaces, Progress in Mathematics 106, Birkhäuser (1992)
,[10] Notes on notes of Thurston, from: "Fundamentals of hyperbolic geometry: Selected expositions" (editors R D Canary, D Epstein, A Marden), London Math. Soc. Lecture Note Ser. 328, Cambridge Univ. Press (2006) 1
, , ,[11] Classification of Weil–Petersson isometries, Amer. J. Math. 125 (2003) 941
, ,[12] Rank-$1$ phenomena for mapping class groups, Duke Math. J. 106 (2001) 581
, , ,[13] Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284
, , ,[14] Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009) 1017
,[15] $1$–slim triangles and uniform hyperbolicity for arc graphs and curve graphs, J. Eur. Math. Soc. 17 (2015) 755
, , ,[16] Quadratic differentials and foliations, Acta Math. 142 (1979) 221
, ,[17] The boundary at infinity of the curve complex, preprint (1999)
,[18] Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, preprint (2015)
, , ,[19] Foliations and laminations on hyperbolic surfaces, Topology 22 (1983) 119
,[20] Extension of the Weil–Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976) 623
,[21] Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387
,[22] Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[23] Geometry of the complex of curves, II: Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902
, ,[24] Prescribing the behavior of Weil–Petersson geodesics in the moduli space of Riemann surfaces, J. Topol. Anal. 7 (2015) 543
,[25] A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005) 179
,[26] Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025
,[27] Covers and the curve complex, Geom. Topol. 13 (2009) 2141
, ,[28] The modular surface and continued fractions, J. London Math. Soc. 31 (1985) 69
,[29] Geometry of the Weil–Petersson completion of Teichmüller space, Surv. Differ. Geom. 8, International Press (2003) 357
,[30] Families of Riemann surfaces and Weil–Petersson geometry, CBMS Regional Conference Series in Mathematics 113, Amer. Math. Soc. (2010)
,Cité par Sources :