Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations
Geometry & topology, Tome 19 (2015) no. 6, pp. 3565-3601.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct Weil–Petersson geodesic rays with minimal filling non-uniquely ergodic ending lamination which are recurrent to a compact subset of the moduli space of Riemann surfaces. This construction shows that an analogue of Masur’s criterion for Teichmüller geodesics does not hold for Weil–Petersson geodesics.

DOI : 10.2140/gt.2015.19.3565
Classification : 30F60, 32G15, 37D40
Keywords: Teichmüller space, Weil–Petersson metric, recurrent geodesics, non-uniquely ergodic lamination

Brock, Jeffrey 1 ; Modami, Babak 2

1 Department of Mathematics, Brown University, Box 1917, Providence, RI 02912, USA
2 Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W Green St, Urbana, IL 61801, USA
@article{GT_2015_19_6_a11,
     author = {Brock, Jeffrey and Modami, Babak},
     title = {Recurrent {Weil{\textendash}Petersson} geodesic rays with non-uniquely ergodic ending laminations},
     journal = {Geometry & topology},
     pages = {3565--3601},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3565},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/}
}
TY  - JOUR
AU  - Brock, Jeffrey
AU  - Modami, Babak
TI  - Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations
JO  - Geometry & topology
PY  - 2015
SP  - 3565
EP  - 3601
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/
DO  - 10.2140/gt.2015.19.3565
ID  - GT_2015_19_6_a11
ER  - 
%0 Journal Article
%A Brock, Jeffrey
%A Modami, Babak
%T Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations
%J Geometry & topology
%D 2015
%P 3565-3601
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/
%R 10.2140/gt.2015.19.3565
%F GT_2015_19_6_a11
Brock, Jeffrey; Modami, Babak. Recurrent Weil–Petersson geodesic rays with non-uniquely ergodic ending laminations. Geometry & topology, Tome 19 (2015) no. 6, pp. 3565-3601. doi : 10.2140/gt.2015.19.3565. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3565/

[1] T Aougab, Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013) 2855

[2] J A Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006) 1523

[3] F Bonahon, Geodesic laminations on surfaces, from: "Laminations and foliations in dynamics, geometry and topology" (editors M Lyubich, J W Milnor, Y N Minsky), Contemp. Math. 269, Amer. Math. Soc. (2001) 1

[4] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundl. Math. Wissen. 319, Springer (1999)

[5] J F Brock, The Weil–Petersson metric and volumes of $3$–dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495

[6] J Brock, H Masur, Coarse and synthetic Weil–Petersson geometry: Quasi-flats, geodesics and relative hyperbolicity, Geom. Topol. 12 (2008) 2453

[7] J Brock, H Masur, Y Minsky, Asymptotics of Weil–Petersson geodesic, I: Ending laminations, recurrence, and flows, Geom. Funct. Anal. 19 (2010) 1229

[8] J Brock, H Masur, Y Minsky, Asymptotics of Weil–Petersson geodesics, II: Bounded geometry and unbounded entropy, Geom. Funct. Anal. 21 (2011) 820

[9] P Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics 106, Birkhäuser (1992)

[10] R D Canary, D B A Epstein, P L Green, Notes on notes of Thurston, from: "Fundamentals of hyperbolic geometry: Selected expositions" (editors R D Canary, D Epstein, A Marden), London Math. Soc. Lecture Note Ser. 328, Cambridge Univ. Press (2006) 1

[11] G Daskalopoulos, R Wentworth, Classification of Weil–Petersson isometries, Amer. J. Math. 125 (2003) 941

[12] B Farb, A Lubotzky, Y Minsky, Rank-$1$ phenomena for mapping class groups, Duke Math. J. 106 (2001) 581

[13] A Fathi, F Laudenbach, V Poenaru, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284

[14] D Gabai, Almost filling laminations and the connectivity of ending lamination space, Geom. Topol. 13 (2009) 1017

[15] S Hensel, P Przytycki, R C H Webb, $1$–slim triangles and uniform hyperbolicity for arc graphs and curve graphs, J. Eur. Math. Soc. 17 (2015) 755

[16] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221

[17] E Klarreich, The boundary at infinity of the curve complex, preprint (1999)

[18] C Leininger, A Lenzhen, K Rafi, Limit sets of Teichmüller geodesics with minimal non-uniquely ergodic vertical foliation, preprint (2015)

[19] G Levitt, Foliations and laminations on hyperbolic surfaces, Topology 22 (1983) 119

[20] H Masur, Extension of the Weil–Petersson metric to the boundary of Teichmüller space, Duke Math. J. 43 (1976) 623

[21] H Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387

[22] H A Masur, Y N Minsky, Geometry of the complex of curves, I: Hyperbolicity, Invent. Math. 138 (1999) 103

[23] H A Masur, Y N Minsky, Geometry of the complex of curves, II: Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[24] B Modami, Prescribing the behavior of Weil–Petersson geodesics in the moduli space of Riemann surfaces, J. Topol. Anal. 7 (2015) 543

[25] K Rafi, A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005) 179

[26] K Rafi, Hyperbolicity in Teichmüller space, Geom. Topol. 18 (2014) 3025

[27] K Rafi, S Schleimer, Covers and the curve complex, Geom. Topol. 13 (2009) 2141

[28] C Series, The modular surface and continued fractions, J. London Math. Soc. 31 (1985) 69

[29] S A Wolpert, Geometry of the Weil–Petersson completion of Teichmüller space, Surv. Differ. Geom. 8, International Press (2003) 357

[30] S A Wolpert, Families of Riemann surfaces and Weil–Petersson geometry, CBMS Regional Conference Series in Mathematics 113, Amer. Math. Soc. (2010)

Cité par Sources :