Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that for almost every (with respect to Masur–Veech measure) translation surface , the set of angles such that has non-uniquely ergodic vertical foliation has Hausdorff dimension (and codimension) . We show this by proving that the Hausdorff codimension of the set of non-uniquely ergodic interval exchange transformations (IETs) in the Rauzy class of is also .
Athreya, Jayadev S 1 ; Chaika, Jonathan 2
@article{GT_2015_19_6_a10, author = {Athreya, Jayadev S and Chaika, Jonathan}, title = {The {Hausdorff} dimension of non-uniquely ergodic directions in {H(2)} is almost everywhere 1\ensuremath{/}2}, journal = {Geometry & topology}, pages = {3537--3563}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2015}, doi = {10.2140/gt.2015.19.3537}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/} }
TY - JOUR AU - Athreya, Jayadev S AU - Chaika, Jonathan TI - The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2 JO - Geometry & topology PY - 2015 SP - 3537 EP - 3563 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/ DO - 10.2140/gt.2015.19.3537 ID - GT_2015_19_6_a10 ER -
%0 Journal Article %A Athreya, Jayadev S %A Chaika, Jonathan %T The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2 %J Geometry & topology %D 2015 %P 3537-3563 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/ %R 10.2140/gt.2015.19.3537 %F GT_2015_19_6_a10
Athreya, Jayadev S; Chaika, Jonathan. The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2. Geometry & topology, Tome 19 (2015) no. 6, pp. 3537-3563. doi : 10.2140/gt.2015.19.3537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/
[1] Hausdorff dimension of the set of nonergodic directions, Ann. of Math. 158 (2003) 661
,[2] Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math. 183 (2011) 337
, , ,[3] Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977) 188
,[4] Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986) 293
, , ,[5] A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z. 148 (1976) 101
, ,[6] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631
, ,[7] Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169
,[8] Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387
,[9] Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. 134 (1991) 455
, ,[10] Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press (1995)
,[11] Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér. 47 (2014) 245
, ,[12] The number of invariant measures for flows on orientable surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 860
,[13] A Kronecker–Weyl theorem modulo $2$, Proc. Nat. Acad. Sci. USA 60 (1968) 1163
,[14] Interval exchange transformations, J. Analyse Math. 33 (1978) 222
,[15] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201
,[16] Continued fraction algorithms for interval exchange maps: An introduction, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 401
,[17] Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437
,Cité par Sources :