The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2
Geometry & topology, Tome 19 (2015) no. 6, pp. 3537-3563.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that for almost every (with respect to Masur–Veech measure) translation surface ω (2), the set of angles θ [0,2π) such that eiθω has non-uniquely ergodic vertical foliation has Hausdorff dimension (and codimension) 1 2. We show this by proving that the Hausdorff codimension of the set of non-uniquely ergodic interval exchange transformations (IETs) in the Rauzy class of (4321) is also 1 2.

DOI : 10.2140/gt.2015.19.3537
Classification : 37E05, 37E35
Keywords: interval exchange transformation, Hausdorff dimension, Rauzy induction

Athreya, Jayadev S 1 ; Chaika, Jonathan 2

1 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350 USA
2 Department of Mathematics, University of Utah, 155 S 1400 E Room 233, Salt Lake City, UT 84112-0090, USA
@article{GT_2015_19_6_a10,
     author = {Athreya, Jayadev S and Chaika, Jonathan},
     title = {The {Hausdorff} dimension of non-uniquely ergodic directions in {H(2)} is almost everywhere 1\ensuremath{/}2},
     journal = {Geometry & topology},
     pages = {3537--3563},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3537},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/}
}
TY  - JOUR
AU  - Athreya, Jayadev S
AU  - Chaika, Jonathan
TI  - The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2
JO  - Geometry & topology
PY  - 2015
SP  - 3537
EP  - 3563
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/
DO  - 10.2140/gt.2015.19.3537
ID  - GT_2015_19_6_a10
ER  - 
%0 Journal Article
%A Athreya, Jayadev S
%A Chaika, Jonathan
%T The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2
%J Geometry & topology
%D 2015
%P 3537-3563
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/
%R 10.2140/gt.2015.19.3537
%F GT_2015_19_6_a10
Athreya, Jayadev S; Chaika, Jonathan. The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere 1∕2. Geometry & topology, Tome 19 (2015) no. 6, pp. 3537-3563. doi : 10.2140/gt.2015.19.3537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3537/

[1] Y Cheung, Hausdorff dimension of the set of nonergodic directions, Ann. of Math. 158 (2003) 661

[2] Y Cheung, P Hubert, H Masur, Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math. 183 (2011) 337

[3] M Keane, Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977) 188

[4] S Kerckhoff, H Masur, J Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. 124 (1986) 293

[5] H B Keynes, D Newton, A “minimal”, non-uniquely ergodic interval exchange transformation, Math. Z. 148 (1976) 101

[6] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math. 153 (2003) 631

[7] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982) 169

[8] H Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387

[9] H Masur, J Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. 134 (1991) 455

[10] P Mattila, Geometry of sets and measures in Euclidean spaces: fractals and rectifiability, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press (1995)

[11] Y Minsky, B Weiss, Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér. 47 (2014) 245

[12] E A Sataev, The number of invariant measures for flows on orientable surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 860

[13] W A Veech, A Kronecker–Weyl theorem modulo $2$, Proc. Nat. Acad. Sci. USA 60 (1968) 1163

[14] W A Veech, Interval exchange transformations, J. Analyse Math. 33 (1978) 222

[15] W A Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982) 201

[16] J C Yoccoz, Continued fraction algorithms for interval exchange maps: An introduction, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 401

[17] A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437

Cité par Sources :