Global Weyl groups and a new theory of multiplicative quiver varieties
Geometry & topology, Tome 19 (2015) no. 6, pp. 3467-3536.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In previous work a relation between a large class of Kac–Moody algebras and meromorphic connections on global curves was established; notably the Weyl group gives isomorphisms between different moduli spaces of connections, and the root system is also seen to play a role. This involved a modular interpretation of many Nakajima quiver varieties, as moduli spaces of connections, whenever the underlying graph was a complete k–partite graph (or more generally a supernova graph). However in the isomonodromy story, or wild nonabelian Hodge theory, slightly larger moduli spaces of connections are considered. This raises the question of whether the full moduli spaces admit Weyl group isomorphisms, rather than just the open parts isomorphic to quiver varieties. This question will be solved here, by developing a multiplicative version of the previous approach. This amounts to constructing many algebraic symplectic isomorphisms between wild character varieties. This approach also enables us to state a conjecture for certain irregular Deligne–Simpson problems and introduce some noncommutative algebras (fission algebras) generalising the deformed multiplicative preprojective algebras (some special cases of which contain the generalised double affine Hecke algebras).

DOI : 10.2140/gt.2015.19.3467
Classification : 14L24, 34M40, 53D05, 53D20, 53D30
Keywords: quiver variety, complex symplectic quotient, GIT, quasi-Hamiltonian, wild character variety, Weyl group, wild Riemann surface, irregular curve, Stokes local system

Boalch, Philip 1

1 Département de Mathématiques, Bâtiment 425, Faculté des Sciences d’Orsay, Université Paris-Sud, 91405 Orsay Cedex, France
@article{GT_2015_19_6_a9,
     author = {Boalch, Philip},
     title = {Global {Weyl} groups and a new theory of multiplicative quiver varieties},
     journal = {Geometry & topology},
     pages = {3467--3536},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3467},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3467/}
}
TY  - JOUR
AU  - Boalch, Philip
TI  - Global Weyl groups and a new theory of multiplicative quiver varieties
JO  - Geometry & topology
PY  - 2015
SP  - 3467
EP  - 3536
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3467/
DO  - 10.2140/gt.2015.19.3467
ID  - GT_2015_19_6_a9
ER  - 
%0 Journal Article
%A Boalch, Philip
%T Global Weyl groups and a new theory of multiplicative quiver varieties
%J Geometry & topology
%D 2015
%P 3467-3536
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3467/
%R 10.2140/gt.2015.19.3467
%F GT_2015_19_6_a9
Boalch, Philip. Global Weyl groups and a new theory of multiplicative quiver varieties. Geometry & topology, Tome 19 (2015) no. 6, pp. 3467-3536. doi : 10.2140/gt.2015.19.3467. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3467/

[1] M R Adams, J Harnad, J Hurtubise, Dual moment maps into loop algebras, Lett. Math. Phys. 20 (1990) 299

[2] A Alekseev, A Malkin, E Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998) 445

[3] D Arinkin, S Lysenko, Isomorphisms between moduli spaces of $\mathrm{SL}(2)$–bundles with connections on $\mathbf{P}^1\setminus \{x_1,\ldots, x_4\}$, Math. Res. Lett. 4 (1997) 181

[4] M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523

[5] M F Atiyah, V G Drinfel’D, N J Hitchin, Y I Manin, Construction of instantons, Phys. Lett. A 65 (1978) 185

[6] W Balser, W B Jurkat, D A Lutz, On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, I, SIAM J. Math. Anal. 12 (1981) 691

[7] M Van Den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008) 5711

[8] M Van Den Bergh, Non-commutative quasi-Hamiltonian spaces, from: "Poisson geometry in mathematics and physics" (editors G Dito, J H Lu, Y Maeda, A Weinstein), Contemp. Math. 450, Amer. Math. Soc. (2008) 273

[9] O Biquard, P P Boalch, Wild non-abelian Hodge theory on curves, Compos. Math. 140 (2004) 179

[10] P P Boalch, Irregular connections and Kac–Moody root systems,

[11] P P Boalch, Symplectic geometry and isomonodromic deformations, PhD thesis, Oxford University (1999)

[12] P P Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001) 137

[13] P P Boalch, Quasi-Hamiltonian geometry of meromorphic connections, preprint (2002)

[14] P P Boalch, Painlevé equations and complex reflections, from: "Proceedings of the International Conference in Honor of Frédéric Pham", Ann. Inst. Fourier 53 (2003) 1009

[15] P P Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. 90 (2005) 167

[16] P P Boalch, Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139 (2007) 369

[17] P P Boalch, Some geometry of irregular connections on curves (2007)

[18] P P Boalch, Irregular connections, Hitchin systems and Kac–Moody root systems (2009)

[19] P P Boalch, Quivers and difference Painlevé equations, from: "Groups and symmetries" (editors J Harnad, P Winternitz), CRM Proc. Lecture Notes 47, Amer. Math. Soc. (2009) 25

[20] P P Boalch, Through the analytic halo: Fission via irregular singularities, Ann. Inst. Fourier (Grenoble) 59 (2009) 2669

[21] P P Boalch, Riemann–Hilbert for tame complex parahoric connections, Transform. Groups 16 (2011) 27

[22] P P Boalch, Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild nonabelian Hodge theory, hyperkähler manifolds, isomonodromic deformations, Painlevé equations, and relations to Lie theory, Habilitation memoir, Université Paris-Sud (2012)

[23] P P Boalch, Hyperkähler manifolds and nonabelian Hodge theory of (irregular) curves (2012)

[24] P P Boalch, Simply-laced isomonodromy systems, Publ. Math. Inst. Hautes Études Sci. 116 (2012) 1

[25] P P Boalch, Geometry and braiding of Stokes data; fission and wild character varieties, Ann. of Math. 179 (2014) 301

[26] W Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003) 339

[27] W Crawley-Boevey, Indecomposable parabolic bundles and the existence of matrices in prescribed conjugacy class closures with product equal to the identity, Publ. Math. Inst. Hautes Études Sci. (2004) 171

[28] W Crawley-Boevey, Quiver algebras, weighted projective lines, and the Deligne–Simpson problem, from: "International Congress of Mathematicians, II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 117

[29] W Crawley-Boevey, M P Holland, Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998) 605

[30] W Crawley-Boevey, P Shaw, Multiplicative preprojective algebras, middle convolution and the Deligne–Simpson problem, Adv. Math. 201 (2006) 180

[31] P Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics 163, Springer (1970)

[32] M Dettweiler, S Reiter, An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000) 761

[33] P Etingof, A Oblomkov, E Rains, Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces, Adv. Math. 212 (2007) 749

[34] M Groechenig, Hilbert schemes as moduli of Higgs bundles and local systems, Int. Math. Res. Not. 2014 (2014) 6523

[35] J Harnad, Dual isomonodromic deformations and moment maps to loop algebras, Comm. Math. Phys. 166 (1994) 337

[36] K Hiroe, D Yamakawa, Moduli spaces of meromorphic connections and quiver varieties, Adv. Math. 266 (2014) 120

[37] N J Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59

[38] N J Hitchin, Frobenius manifolds, from: "Gauge theory and symplectic geometry" (editors J Hurtubise, F Lalonde), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences 488, Kluwer (1997) 69

[39] V G Kac, Infinite-dimensional Lie algebras, Cambridge Univ. Press (1990)

[40] N M Katz, Rigid local systems, Annals of Mathematics Studies 139, Princeton Univ. Press (1996)

[41] A D King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. 45 (1994) 515

[42] V P Kostov, On the Deligne–Simpson problem, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 657

[43] V P Kostov, Additive Deligne–Simpson problem for non-Fuchsian systems, Funkcial. Ekvac. 53 (2010) 395

[44] H Kraft, C Procesi, Closures of conjugacy classes of matrices are normal, Invent. Math. 53 (1979) 227

[45] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665

[46] P B Kronheimer, H Nakajima, Yang–Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990) 263

[47] B Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Mathematics 96, Birkhäuser (1991)

[48] H Nakajima, Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras, Duke Math. J. 76 (1994) 365

[49] H Nakajima, Quiver varieties and Kac–Moody algebras, Duke Math. J. 91 (1998) 515

[50] H Nakajima, Quiver varieties and quantum affine algebras, Sugaku Expositions 19 (2006) 53

[51] A Pressley, G Segal, Loop groups, Oxford University Press (1986)

[52] C Sabbah, Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier (Grenoble) 49 (1999) 1265

[53] C T Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713

[54] C T Simpson, Products of matrices, from: "Differential geometry, global analysis, and topology" (editors A Nicas, W F Shadwick), CMS Conf. Proc. 12, Amer. Math. Soc. (1991) 157

[55] C T Simpson, Katz's middle convolution algorithm, Pure Appl. Math. Q. 5 (2009) 781

[56] S Szabó, Nahm transform for integrable connections on the Riemann sphere, Mém. Soc. Math. Fr. 110 (2007)

[57] D Yamakawa, Geometry of multiplicative preprojective algebra, Int. Math. Res. Pap. (2008)

Cité par Sources :