Pessimal packing shapes
Geometry & topology, Tome 19 (2015) no. 1, pp. 343-363.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We address the question of which convex shapes, when packed as densely as possible under certain restrictions, fill the least space and leave the most empty space. In each different dimension and under each different set of restrictions, this question is expected to have a different answer or perhaps no answer at all. As the problem of identifying global minima in most cases appears to be beyond current reach, in this paper we focus on local minima. We review some known results and prove these new results: in two dimensions, the regular heptagon is a local minimum of the double-lattice packing density, and in three dimensions, the directional derivative (in the sense of Minkowski addition) of the double-lattice packing density at the point in the space of shapes corresponding to the ball is in every direction positive.

DOI : 10.2140/gt.2015.19.343
Classification : 52A40, 52C15, 52C17
Keywords: packing, convex body, lattice, density

Kallus, Yoav 1

1 Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
@article{GT_2015_19_1_a6,
     author = {Kallus, Yoav},
     title = {Pessimal packing shapes},
     journal = {Geometry & topology},
     pages = {343--363},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.343},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.343/}
}
TY  - JOUR
AU  - Kallus, Yoav
TI  - Pessimal packing shapes
JO  - Geometry & topology
PY  - 2015
SP  - 343
EP  - 363
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.343/
DO  - 10.2140/gt.2015.19.343
ID  - GT_2015_19_1_a6
ER  - 
%0 Journal Article
%A Kallus, Yoav
%T Pessimal packing shapes
%J Geometry & topology
%D 2015
%P 343-363
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.343/
%R 10.2140/gt.2015.19.343
%F GT_2015_19_1_a6
Kallus, Yoav. Pessimal packing shapes. Geometry & topology, Tome 19 (2015) no. 1, pp. 343-363. doi : 10.2140/gt.2015.19.343. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.343/

[1] A Bezdek, W Kuperberg, Dense packing of space with various convex solids, from: "Geometry — intuitive, discrete, and convex" (editors I Bárány, K J Böröczky, G Fejes Tóth, J Pach), Bolyai Soc. Math. Stud. 24, János Bolyai Math. Soc. (2013) 65

[2] P Brass, W Moser, J Pach, Research problems in discrete geometry, Springer (2005)

[3] R Courant, The least dense lattice packing of two-dimensional convex bodies, Comm. Pure Appl. Math. 18 (1965) 339

[4] K R Doheny, On the lower bound of packing density for convex bodies in the plane, Beiträge Algebra Geom. 36 (1995) 109

[5] V Ennola, On the lattice constant of a symmetric convex domain, J. London Math. Soc. 36 (1961) 135

[6] I Fáry, Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France 78 (1950) 152

[7] L Fejes Tóth, Some packing and covering theorems, Acta Sci. Math. Szeged 12 (1950) 62

[8] M Gardner, New mathematical diversions, Math. Assoc. Amer. (1995) 268

[9] A A Giannopoulos, V D Milman, Extremal problems and isotropic positions of convex bodies, Israel J. Math. 117 (2000) 29

[10] H Groemer, Some basic properties of packing and covering constants, Discrete Comput. Geom. 1 (1986) 183

[11] T C Hales, A proof of the Kepler conjecture, Ann. of Math. 162 (2005) 1065

[12] E Hlawka, Zur Geometrie der Zahlen, Math. Z. 49 (1943) 285

[13] Y Kallus, The 3–ball is a local pessimum for packing, Adv. Math. 264 (2014) 355

[14] Y Kallus, V Elser, S Gravel, Dense periodic packings of tetrahedra with small repeating units, Discrete Comput. Geom. 44 (2010) 245

[15] G Kuperberg, W Kuperberg, Double-lattice packings of convex bodies in the plane, Discrete Comput. Geom. 5 (1990) 389

[16] A M Macbeath, A compactness theorem for affine equivalence-classes of convex regions, Canadian J. Math. 3 (1951) 54

[17] K Mahler, On the minimum determinant and the circumscribed hexagons of a convex domain, Nederl. Akad. Wetensch., Proc. 50 (1947) 326

[18] F L Nazarov, On the Reinhardt problem of lattice packings of convex regions : Local extremality of the Reinhardt octagon, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 151 (1986) 104, 197

[19] K Reinhardt, Über die dichteste gitterf örmige lagerung kongruenter bereiche in der ebene und eine besondere art konvexer kurven, Abh. Math. Sem. Univ. Hamburg 10 (1934) 216

[20] C A Rogers, The closest packing of convex two-dimensional domains, Acta Math. 86 (1951) 309

[21] R Schneider, Convex bodies : The Brunn–Minkowski theory, 44, Cambridge Univ. Press (1993)

[22] F E Schuster, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007) 5567

[23] E H Smith, A new packing density bound in 3–space, Discrete Comput. Geom. 34 (2005) 537

Cité par Sources :