Dimer models and the special McKay correspondence
Geometry & topology, Tome 19 (2015) no. 6, pp. 3405-3466.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the behavior of a dimer model under the operation of removing a corner from the lattice polygon and taking the convex hull of the rest. This refines an operation of Gulotta, and the special McKay correspondence plays an essential role in this refinement. As a corollary, we show that for any lattice polygon there is a dimer model such that the derived category of finitely generated modules over the path algebra of the corresponding quiver with relations is equivalent to the derived category of coherent sheaves on a toric Calabi–Yau 3–fold determined by the lattice polygon. Our proof is based on a detailed study of the relationship between combinatorics of dimer models and geometry of moduli spaces, and does not depend on the result of Bridgeland, King and Reid.

DOI : 10.2140/gt.2015.19.3405
Classification : 14F05, 14D20, 16G20, 14E16
Keywords: dimer model, McKay correspondence, derived equivalence

Ishii, Akira 1 ; Ueda, Kazushi 2

1 Division of Mathematical and Information Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan
2 Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku 153-8914, Japan
@article{GT_2015_19_6_a8,
     author = {Ishii, Akira and Ueda, Kazushi},
     title = {Dimer models and the special {McKay} correspondence},
     journal = {Geometry & topology},
     pages = {3405--3466},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3405},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3405/}
}
TY  - JOUR
AU  - Ishii, Akira
AU  - Ueda, Kazushi
TI  - Dimer models and the special McKay correspondence
JO  - Geometry & topology
PY  - 2015
SP  - 3405
EP  - 3466
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3405/
DO  - 10.2140/gt.2015.19.3405
ID  - GT_2015_19_6_a8
ER  - 
%0 Journal Article
%A Ishii, Akira
%A Ueda, Kazushi
%T Dimer models and the special McKay correspondence
%J Geometry & topology
%D 2015
%P 3405-3466
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3405/
%R 10.2140/gt.2015.19.3405
%F GT_2015_19_6_a8
Ishii, Akira; Ueda, Kazushi. Dimer models and the special McKay correspondence. Geometry & topology, Tome 19 (2015) no. 6, pp. 3405-3466. doi : 10.2140/gt.2015.19.3405. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3405/

[1] R J Baxter, Exactly solved models in statistical mechanics, Academic Press (1982)

[2] M Van Den Bergh, Non-commutative crepant resolutions, from: "The legacy of Niels Henrik Abel" (editors O A Laudal, R Piene), Springer (2004) 749

[3] M Van Den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004) 423

[4] R Bocklandt, Consistency conditions for dimer models, Glasg. Math. J. 54 (2012) 429

[5] A I Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 25

[6] A Bondal, D Orlov, Semiorthogonal decomposition for algebraic varieties, preprint (1995)

[7] T Bridgeland, Flops and derived categories, Invent. Math. 147 (2002) 613

[8] T Bridgeland, A King, M Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535

[9] N Broomhead, Dimer models and Calabi–Yau algebras, Mem. Amer. Math. Soc. 1011, Amer. Math. Soc. (2012)

[10] A Craw, The special McKay correspondence as an equivalence of derived categories, Q. J. Math. 62 (2011) 573

[11] A Craw, M Reid, How to calculate $A$–Hilb $\mathbb C^3$, from: "Geometry of toric varieties" (editors L Bonavero, M Brion), Sémin. Congr. 6, Soc. Math. France (2002) 129

[12] B Davison, Consistency conditions for brane tilings, J. Algebra 338 (2011) 1

[13] H Esnault, Reflexive modules on quotient surface singularities, J. Reine Angew. Math. 362 (1985) 63

[14] S Franco, D Vegh, Moduli spaces of gauge theories from dimer models: proof of the correspondence, J. High Energy Phys. (2006)

[15] V Ginzburg, Calabi–Yau algebras, preprint (2007)

[16] D R Gulotta, Properly ordered dimers, $R$–charges, and an efficient inverse algorithm, J. High Energy Phys. (2008)

[17] A Hanany, D Vegh, Quivers, tilings, branes and rhombi, J. High Energy Phys. (2007)

[18] R Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer (1977)

[19] A Ishii, On the McKay correspondence for a finite small subgroup of $\mathrm{GL}(2,\mathbb C)$, J. Reine Angew. Math. 549 (2002) 221

[20] A Ishii, K Ueda, On moduli spaces of quiver representations associated with dimer models, from: "Higher dimensional algebraic varieties and vector bundles" (editor S Mukai), RIMS Kôkyûroku Bessatsu B9, Res. Inst. Math. Sci. (2008) 127

[21] A Ishii, K Ueda, A note on consistency conditions on dimer models, from: "Higher dimensional algebraic geometry" (editors S Mukai, N Nakayama), RIMS Kôkyûroku Bessatsu B24, Res. Inst. Math. Sci. (2011) 143

[22] A Ishii, K Ueda, Dimer models and crepant resolutions, preprint (2013)

[23] A Ishii, K Ueda, The special McKay correspondence and exceptional collection, preprint (2013)

[24] Y Ito, H Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topology 39 (2000) 1155

[25] M Kapranov, E Vasserot, Kleinian singularities, derived categories and Hall algebras, Math. Ann. 316 (2000) 565

[26] K D Kennaway, Brane tilings, Internat. J. Modern Phys. A 22 (2007) 2977

[27] R Kenyon, An introduction to the dimer model, from: "School and Conference on Probability Theory" (editor G F Lawler), ICTP Lect. Notes 17, Abdus Salam Int. Cent. Theoret. Phys. (2004) 267

[28] A D King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. 45 (1994) 515

[29] S Mozgovoy, M Reineke, On the noncommutative Donaldson–Thomas invariants arising from brane tilings, Adv. Math. 223 (2010) 1521

[30] I Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001) 757

[31] M Reid, McKay correspondence, lecture notes (1997)

[32] J Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989) 436

[33] K Ueda, M Yamazaki, Dimer models for parallelograms, preprint (2010)

[34] K Ueda, M Yamazaki, A note on dimer models and McKay quivers, Comm. Math. Phys. 301 (2011) 723

[35] M Wemyss, The $\mathrm{GL}(2,\mathbb C)$ McKay correspondence, Math. Ann. 350 (2011) 631

[36] J Wunram, Reflexive modules on cyclic quotient surface singularities, from: "Singularities, representation of algebras, and vector bundles" (editors G M Greuel, G Trautmann), Lecture Notes in Math. 1273, Springer (1987) 221

[37] J Wunram, Reflexive modules on quotient surface singularities, Math. Ann. 279 (1988) 583

Cité par Sources :