Some new results on modified diagonals
Geometry & topology, Tome 19 (2015) no. 6, pp. 3307-3343.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

O’Grady studied mth modified diagonals for a smooth connected projective variety, generalizing the Gross–Schoen modified small diagonal. These cycles Γm(X,a) depend on a choice of reference point a X (or more generally a degree-1 zero-cycle). We prove that for any X, a, the cycle Γm(X,a) vanishes for large m. We also prove the following conjecture of O’Grady: If X is a double cover of Y and Γm(Y,a) vanishes (where a belongs to the branch locus), then Γ2m1(X,a) vanishes, and we provide a generalization to higher-degree finite covers. We finally prove that Γn+1(X,oX) = 0 when X = S[m], where S is a K3 surface, and n = 2m, which was conjectured by O’Grady and proved by him for m = 2,3.

DOI : 10.2140/gt.2015.19.3307
Classification : 14C15, 14C25
Keywords: small diagonal, Chow groups, $K3$ surfaces

Voisin, Claire 1

1 Institut de Mathématiques de Jussieu, CNRS, 4 place Jussieu, Case 247, 75252 Paris Cedex 05, France
@article{GT_2015_19_6_a6,
     author = {Voisin, Claire},
     title = {Some new results on modified diagonals},
     journal = {Geometry & topology},
     pages = {3307--3343},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3307},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3307/}
}
TY  - JOUR
AU  - Voisin, Claire
TI  - Some new results on modified diagonals
JO  - Geometry & topology
PY  - 2015
SP  - 3307
EP  - 3343
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3307/
DO  - 10.2140/gt.2015.19.3307
ID  - GT_2015_19_6_a6
ER  - 
%0 Journal Article
%A Voisin, Claire
%T Some new results on modified diagonals
%J Geometry & topology
%D 2015
%P 3307-3343
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3307/
%R 10.2140/gt.2015.19.3307
%F GT_2015_19_6_a6
Voisin, Claire. Some new results on modified diagonals. Geometry & topology, Tome 19 (2015) no. 6, pp. 3307-3343. doi : 10.2140/gt.2015.19.3307. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3307/

[1] A Beauville, Sur l'anneau de Chow d'une variété abélienne, Math. Ann. 273 (1986) 647

[2] A Beauville, C Voisin, On the Chow ring of a $K3$ surface, J. Algebraic Geom. 13 (2004) 417

[3] S Bloch, V Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983) 1235

[4] M A A De Cataldo, L Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002) 824

[5] E Colombo, B Van Geemen, Note on curves in a Jacobian, Compositio Math. 88 (1993) 333

[6] G Ellingsrud, L Göttsche, M Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81

[7] N Fakhruddin, Algebraic cycles on generic abelian varieties, Compositio Math. 100 (1996) 101

[8] T Gaffney, R Lazarsfeld, On the ramification of branched coverings of $\mathbf{P}^{n}$, Invent. Math. 59 (1980) 53

[9] B H Gross, C Schoen, The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble) 45 (1995) 649

[10] S I Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005) 173

[11] B Moonen, Q Yin, Some remarks on modified diagonals, Communications in Contemporary Mathematics (2014)

[12] K G O’Grady, Computations with modified diagonals, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 25 (2014) 249

[13] M Shen, C Vial, The Fourier transform for certain hyperKähler fourfolds,

[14] V Voevodsky, A nilpotence theorem for cycles algebraically equivalent to zero, Internat. Math. Res. Notices (1995) 187

[15] C Voisin, Universally defined cycles,

[16] C Voisin, Remarks on zero-cycles of self-products of varieties, from: "Moduli of vector bundles" (editor M Maruyama), Lecture Notes in Pure and Appl. Math. 179, Dekker (1996) 265

[17] C Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008) 613

[18] C Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies 187, Princeton Univ. Press (2014)

[19] C Voisin, Infinitesimal invariants for cycles modulo algebraic equivalence and 1-cycles on Jacobians, Algebr. Geom. 1 (2014) 140

[20] Q Yin, Finite-dimensionality and cycles on powers of $K3$ surfaces, Comment. Math. Helv. 90 (2015) 503

Cité par Sources :