Anti-trees and right-angled Artin subgroups of braid groups
Geometry & topology, Tome 19 (2015) no. 6, pp. 3289-3306.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that an arbitrary right-angled Artin group G admits a quasi-isometric group embedding into a right-angled Artin group defined by the opposite graph of a tree, and, consequently, into a pure braid group. It follows that G is a quasi-isometrically embedded subgroup of the area-preserving diffeomorphism groups of the 2–disk and of the 2–sphere with Lp–metrics for suitable p. Another corollary is that there exists a closed hyperbolic manifold group of each dimension which admits a quasi-isometric group embedding into a pure braid group. Finally, we show that the isomorphism problem, conjugacy problem, and membership problem are unsolvable in the class of finitely presented subgroups of braid groups.

DOI : 10.2140/gt.2015.19.3289
Classification : 20F36, 53D05, 20F10, 20F67
Keywords: right-angled Artin group, braid group, cancellation theory, hyperbolic manifold, quasi-isometry

Kim, Sang-hyun 1 ; Koberda, Thomas 2

1 Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea
2 Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
@article{GT_2015_19_6_a5,
     author = {Kim, Sang-hyun and Koberda, Thomas},
     title = {Anti-trees and right-angled {Artin} subgroups of braid groups},
     journal = {Geometry & topology},
     pages = {3289--3306},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3289},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3289/}
}
TY  - JOUR
AU  - Kim, Sang-hyun
AU  - Koberda, Thomas
TI  - Anti-trees and right-angled Artin subgroups of braid groups
JO  - Geometry & topology
PY  - 2015
SP  - 3289
EP  - 3306
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3289/
DO  - 10.2140/gt.2015.19.3289
ID  - GT_2015_19_6_a5
ER  - 
%0 Journal Article
%A Kim, Sang-hyun
%A Koberda, Thomas
%T Anti-trees and right-angled Artin subgroups of braid groups
%J Geometry & topology
%D 2015
%P 3289-3306
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3289/
%R 10.2140/gt.2015.19.3289
%F GT_2015_19_6_a5
Kim, Sang-hyun; Koberda, Thomas. Anti-trees and right-angled Artin subgroups of braid groups. Geometry & topology, Tome 19 (2015) no. 6, pp. 3289-3306. doi : 10.2140/gt.2015.19.3289. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3289/

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045

[2] V I Arnold, B A Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences 125, Springer (1998)

[3] A Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar. 38 (1981) 19

[4] M Benaim, J M Gambaudo, Metric properties of the group of area preserving diffeomorphisms, Trans. Amer. Math. Soc. 353 (2001) 4661

[5] N Bergeron, F Haglund, D T Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. 83 (2011) 431

[6] N Bergeron, D T Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843

[7] M Brandenbursky, Quasi-morphisms and $L^p$–metrics on groups of volume-preserving diffeomorphisms, J. Topol. Anal. 4 (2012) 255

[8] M Brandenbursky, E Shelukhin, On the large-scale geometry of the $L^p$-metric on the symplectomorphism group of the two-sphere, preprint (2014)

[9] M R Bridson, On the subgroups of right-angled Artin groups and mapping class groups, Math. Res. Lett. 20 (2013) 203

[10] V O Bugaenko, On reflective unimodular hyperbolic quadratic forms, Selecta Math. Soviet. 9 (1990) 263

[11] V O Bugaenko, Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, from: "Lie groups, their discrete subgroups, and invariant theory" (editor È B Vinberg), Adv. Soviet Math. 8, Amer. Math. Soc. (1992) 33

[12] M Casals-Ruiz, A Duncan, I Kazachkov, Embedddings between partially commutative groups: two counterexamples, J. Algebra 390 (2013) 87

[13] R Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141

[14] M T Clay, C J Leininger, J Mangahas, The geometry of right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn. 6 (2012) 249

[15] M Clay, C J Leininger, D Margalit, Abstract commensurators of right-angled Artin groups and mapping class groups, Math. Res. Lett. 21 (2014) 461

[16] J Crisp, L Paris, The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math. 145 (2001) 19

[17] J Crisp, B Wiest, Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups, Algebr. Geom. Topol. 4 (2004) 439

[18] J Crisp, B Wiest, Quasi-isometrically embedded subgroups of braid and diffeomorphism groups, Trans. Amer. Math. Soc. 359 (2007) 5485

[19] M W Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series 32, Princeton Univ. Press (2008)

[20] C Droms, A complex for right-angled Coxeter groups, Proc. Amer. Math. Soc. 131 (2003) 2305

[21] B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012)

[22] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551

[23] F Haglund, D T Wise, Coxeter groups are virtually special, Adv. Math. 224 (2010) 1890

[24] M Kapovich, RAAGs in Ham, Geom. Funct. Anal. 22 (2012) 733

[25] B Khesin, R Wendt, The geometry of infinite-dimensional groups, Ergeb. Math. Grenzgeb. 51, Springer (2009)

[26] S H Kim, Co-contractions of graphs and right-angled Artin groups, Algebr. Geom. Topol. 8 (2008) 849

[27] S H Kim, T Koberda, Embedability between right-angled Artin groups, Geom. Topol. 17 (2013) 493

[28] S H Kim, T Koberda, The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput. 24 (2014) 121

[29] S H Kim, T Koberda, An obstruction to embedding right-angled Artin groups in mapping class groups, Int. Math. Res. Not. 2014 (2014) 3912

[30] S H Kim, T Koberda, Right-angled Artin groups and finite subgraphs of curve graphs, preprint (2014)

[31] T Koberda, Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal. 22 (2012) 1541

[32] C J Leininger, D Margalit, Two-generator subgroups of the pure braid group, Geom. Dedicata 147 (2010) 107

[33] L Polterovich, The geometry of the group of symplectic diffeomorphisms, Birkhäuser (2001)

[34] S Smale, Diffeomorphisms of the $2$–sphere, Proc. Amer. Math. Soc. 10 (1959) 621

[35] D T Wise, The structure of groups with a quasiconvex hierarchy, preprint (2011)

[36] C Wrathall, The word problem for free partially commutative groups, J. Symbolic Comput. 6 (1988) 99

Cité par Sources :