Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be an ring spectrum with zero odd-dimensional homotopy groups. Every map of ring spectra is represented by a map of ring spectra. If is invertible in , then every map of ring spectra is represented by a map of ring spectra.
Chadwick, Steven Greg 1 ; Mandell, Michael A 2
@article{GT_2015_19_6_a3, author = {Chadwick, Steven Greg and Mandell, Michael A}, title = {En genera}, journal = {Geometry & topology}, pages = {3193--3232}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2015}, doi = {10.2140/gt.2015.19.3193}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3193/} }
Chadwick, Steven Greg; Mandell, Michael A. En genera. Geometry & topology, Tome 19 (2015) no. 6, pp. 3193-3232. doi : 10.2140/gt.2015.19.3193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3193/
[1] Stable homotopy and generalised homology, University of Chicago Press (1974)
,[2] Isogenies of formal group laws and power operations in the cohomology theories $E_n$, Duke Math. J. 79 (1995) 423
,[3] Multiplicative orientations of $KO$–theory and of the spectrum of topological modular forms, preprint (2010)
, , ,[4] Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math. 146 (2001) 595
, , ,[5] The sigma orientation is an $H_\infty$ map, Amer. J. Math. 126 (2004) 247
, , ,[6] Homology and cohomology of $E_\infty$ ring spectra, Math. Z. 249 (2005) 903
, ,[7] Homology of $E_n$ ring spectra and iterated $THH$, Algebr. Geom. Topol. 11 (2011) 939
, ,[8] The multiplication on BP, J. Topol. 6 (2013) 285
, ,[9] Homotopy-everything $H$–spaces, Bull. Amer. Math. Soc. 74 (1968) 1117
, ,[10] Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer (1973)
, ,[11] On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987) 361
,[12] On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633
, , ,[13] Structured orientations of Thom spectra, PhD thesis, Indiana University (2012)
,[14] The relation of cobordism to $K$–theories, Lecture Notes in Mathematics 28, Springer (1966)
, ,[15] Chern classes in general cohomology, from: "Symposia Mathematica, Vol V", Academic Press (1971) 385
,[16] Rings, modules, and algebras in stable homotopy theory, Math. Surv. Monogr. 47, Amer. Math. Soc. (1997)
, , , ,[17] Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163
, ,[18] Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. 9, Springer (1956)
,[19] Topological methods in algebraic geometry, Grund. der math. Wissenschaften 131, Springer (1978)
,[20] For complex orientations preserving power operations, $p$–typicality is atypical, Topology Appl. 157 (2010) 2271
, ,[21] Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer, Berlin (1986)
, , , ,[22] $E_\infty$ algebras and $p$–adic homotopy theory, Topology 40 (2001) 43
,[23] Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 755, Amer. Math. Soc. (2002)
, ,[24] Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441
, , , ,[25] The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer (1972)
,[26] $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) 268
,[27] Multiplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982) 1
,[28] Homotopy properties of Thom complexes, Mat. Sb. 57 (99) (1962) 407
,[29] Seminar on the Atiyah–Singer index theorem, Annals of Mathematics Studies 57, Princeton Univ. Press (1965)
,[30] Some remarks on symplectic cobordism, Ann. of Math. 86 (1967) 425
,[31] Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987) 525
,Cité par Sources :