En genera
Geometry & topology, Tome 19 (2015) no. 6, pp. 3193-3232.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let R be an E2 ring spectrum with zero odd-dimensional homotopy groups. Every map of ring spectra MU R is represented by a map of E2 ring spectra. If 2 is invertible in π0R, then every map of ring spectra MSO R is represented by a map of E2 ring spectra.

DOI : 10.2140/gt.2015.19.3193
Classification : 55N22, 55P43
Keywords: genus, complex cobordism, oriented cobordism, $E_n$ ring spectrum, Thom spectrum, operadic algebra

Chadwick, Steven Greg 1 ; Mandell, Michael A 2

1 Department of Mathematics, University of Maryland, 4176 Campus Drive – Mathematics Building, College Park, MD 20742-4015, USA
2 Department of Mathematics, Indiana University, Rawles Hall, 831 E 3rd St, Bloomington, IN 47405, USA
@article{GT_2015_19_6_a3,
     author = {Chadwick, Steven Greg and Mandell, Michael A},
     title = {En genera},
     journal = {Geometry & topology},
     pages = {3193--3232},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3193},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3193/}
}
TY  - JOUR
AU  - Chadwick, Steven Greg
AU  - Mandell, Michael A
TI  - En genera
JO  - Geometry & topology
PY  - 2015
SP  - 3193
EP  - 3232
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3193/
DO  - 10.2140/gt.2015.19.3193
ID  - GT_2015_19_6_a3
ER  - 
%0 Journal Article
%A Chadwick, Steven Greg
%A Mandell, Michael A
%T En genera
%J Geometry & topology
%D 2015
%P 3193-3232
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3193/
%R 10.2140/gt.2015.19.3193
%F GT_2015_19_6_a3
Chadwick, Steven Greg; Mandell, Michael A. En genera. Geometry & topology, Tome 19 (2015) no. 6, pp. 3193-3232. doi : 10.2140/gt.2015.19.3193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3193/

[1] J F Adams, Stable homotopy and generalised homology, University of Chicago Press (1974)

[2] M Ando, Isogenies of formal group laws and power operations in the cohomology theories $E_n$, Duke Math. J. 79 (1995) 423

[3] M Ando, M J Hopkins, C Rezk, Multiplicative orientations of $KO$–theory and of the spectrum of topological modular forms, preprint (2010)

[4] M Ando, M J Hopkins, N P Strickland, Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math. 146 (2001) 595

[5] M Ando, M J Hopkins, N P Strickland, The sigma orientation is an $H_\infty$ map, Amer. J. Math. 126 (2004) 247

[6] M Basterra, M A Mandell, Homology and cohomology of $E_\infty$ ring spectra, Math. Z. 249 (2005) 903

[7] M Basterra, M A Mandell, Homology of $E_n$ ring spectra and iterated $THH$, Algebr. Geom. Topol. 11 (2011) 939

[8] M Basterra, M A Mandell, The multiplication on BP, J. Topol. 6 (2013) 285

[9] J M Boardman, R M Vogt, Homotopy-everything $H$–spaces, Bull. Amer. Math. Soc. 74 (1968) 1117

[10] J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer (1973)

[11] A K Bousfield, On the homology spectral sequence of a cosimplicial space, Amer. J. Math. 109 (1987) 361

[12] M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633

[13] S G Chadwick, Structured orientations of Thom spectra, PhD thesis, Indiana University (2012)

[14] P E Conner, E E Floyd, The relation of cobordism to $K$–theories, Lecture Notes in Mathematics 28, Springer (1966)

[15] A Dold, Chern classes in general cohomology, from: "Symposia Mathematica, Vol V", Academic Press (1971) 385

[16] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surv. Monogr. 47, Amer. Math. Soc. (1997)

[17] A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163

[18] F Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergeb. Math. Grenzgeb. 9, Springer (1956)

[19] F Hirzebruch, Topological methods in algebraic geometry, Grund. der math. Wissenschaften 131, Springer (1978)

[20] N Johnson, J Noel, For complex orientations preserving power operations, $p$–typicality is atypical, Topology Appl. 157 (2010) 2271

[21] L G Lewis Jr., J P May, M Steinberger, J E Mcclure, Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer, Berlin (1986)

[22] M A Mandell, $E_\infty$ algebras and $p$–adic homotopy theory, Topology 40 (2001) 43

[23] M A Mandell, J P May, Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 755, Amer. Math. Soc. (2002)

[24] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441

[25] J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer (1972)

[26] J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) 268

[27] J P May, Multiplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982) 1

[28] S P Novikov, Homotopy properties of Thom complexes, Mat. Sb. 57 (99) (1962) 407

[29] R S Palais, Seminar on the Atiyah–Singer index theorem, Annals of Mathematics Studies 57, Princeton Univ. Press (1965)

[30] R E Stong, Some remarks on symplectic cobordism, Ann. of Math. 86 (1967) 425

[31] E Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987) 525

Cité par Sources :