The stable homology of congruence subgroups
Geometry & topology, Tome 19 (2015) no. 6, pp. 3149-3191.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We relate the completed cohomology groups of SLN(OF), where OF is the ring of integers of a number field, to K–theory and Galois cohomology. Various consequences include showing that Borel’s stable classes become infinitely p–divisible up the p–congruence tower if and only if a certain p–adic zeta value is nonzero. We use our results to compute H2(ΓN(p), Fp) (for sufficiently large N), where ΓN(p) is the full level-p congruence subgroup of SLN().

DOI : 10.2140/gt.2015.19.3149
Classification : 11F75, 19F99, 11F80
Keywords: arithmetic groups, stable homology, completed homology, $K$–theory

Calegari, Frank 1

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208, USA
@article{GT_2015_19_6_a2,
     author = {Calegari, Frank},
     title = {The stable homology of congruence subgroups},
     journal = {Geometry & topology},
     pages = {3149--3191},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3149},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3149/}
}
TY  - JOUR
AU  - Calegari, Frank
TI  - The stable homology of congruence subgroups
JO  - Geometry & topology
PY  - 2015
SP  - 3149
EP  - 3191
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3149/
DO  - 10.2140/gt.2015.19.3149
ID  - GT_2015_19_6_a2
ER  - 
%0 Journal Article
%A Calegari, Frank
%T The stable homology of congruence subgroups
%J Geometry & topology
%D 2015
%P 3149-3191
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3149/
%R 10.2140/gt.2015.19.3149
%F GT_2015_19_6_a2
Calegari, Frank. The stable homology of congruence subgroups. Geometry & topology, Tome 19 (2015) no. 6, pp. 3149-3191. doi : 10.2140/gt.2015.19.3149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3149/

[1] A Ash, Galois representations attached to mod $p$ cohomology of $\mathrm{GL}(n,\mathbf{Z})$, Duke Math. J. 65 (1992) 235

[2] H Bass, J Milnor, J P Serre, Solution of the congruence subgroup problem for $\mathrm{SL}_{n} (n\geq 3)$ and $\mathrm{Sp}_{2n} (n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. (1967) 59

[3] A Besser, P Buckingham, R De Jeu, X F Roblot, On the $p$–adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009) 375

[4] A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235

[5] N Boston, J S Ellenberg, Pro-$p$ groups and towers of rational homology spheres, Geom. Topol. 10 (2006) 331

[6] W Browder, J Pakianathan, Cohomology of uniformly powerful $p$–groups, Trans. Amer. Math. Soc. 352 (2000) 2659

[7] F Calegari, Irrationality of certain $p$–adic periods for small $p$, Int. Math. Res. Not. 2005 (2005) 1235

[8] F Calegari, N M Dunfield, Automorphic forms and rational homology $3$–spheres, Geom. Topol. 10 (2006) 295

[9] F Calegari, M Emerton, Hecke operators on stable cohomology,

[10] F Calegari, M Emerton, Mod–$p$ cohomology growth in $p$–adic analytic towers of 3-manifolds, Groups Geom. Dyn. 5 (2011) 355

[11] F Calegari, M Emerton, Completed cohomology — a survey, from: "Non-abelian fundamental groups and Iwasawa theory" (editors J Coates, M Kim, F Pop, M Saidi, P Schneider), London Math. Soc. Lecture Note Ser. 393, Cambridge Univ. Press (2012) 239

[12] F Calegari, D Geraghty, Modularity lifting beyond the Taylor–Wiles method,

[13] F Calegari, A Venkatesh, A torsion Jacquet–Langlands correspondence,

[14] R M Charney, Homology stability for $\mathrm{GL}_{n}$ of a Dedekind domain, Invent. Math. 56 (1980) 1

[15] R Charney, On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (1984) 2081

[16] T Church, J S Ellenberg, B Farb, FI–modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833

[17] T Church, J S Ellenberg, B Farb, R Nagpal, FI–modules over Noetherian rings, Geom. Topol. 18 (2014) 2951

[18] T Church, B Farb, Representation theory and homological stability, Adv. Math. 245 (2013) 250

[19] H Cohen, H W Lenstra Jr., Heuristics on class groups of number fields, from: "Number theory, Noordwijkerhout 1983" (editor H Jager), Lecture Notes in Math. 1068, Springer (1984) 33

[20] H Darmon, F Diamond, R Taylor, Fermat's last theorem, from: "Elliptic curves, modular forms Fermat's last theorem" (editors J Coates, S T Yau), Int. Press (1997) 2

[21] P Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 287 (1978)

[22] L Evens, E M Friedlander, On $K_\ast(\mathbf{Z}/p^{2}\mathbf{Z})$ and related homology groups, Trans. Amer. Math. Soc. 270 (1982) 1

[23] O Gabber, $K$–theory of Henselian local rings and Henselian pairs, from: "Algebraic $K$–theory, commutative algebra, and algebraic geometry" (editors R K Dennis, C Pedrini, M R Stein), Contemp. Math. 126, Amer. Math. Soc. (1992) 59

[24] R Greenberg, Iwasawa theory for $p$–adic representations, from: "Algebraic number theory" (editors J Coates, R Greenberg, B Mazur, I Satake), Adv. Stud. Pure Math. 17, Academic Press (1989) 97

[25] L Hesselholt, I Madsen, On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1

[26] M Lazard, Groupes analytiques $p$–adiques, Inst. Hautes Études Sci. Publ. Math. (1965) 389

[27] R Lee, R H Szczarba, The group $K_{3}(Z)$ is cyclic of order forty-eight, Ann. of Math. 104 (1976) 31

[28] J Mccleary, A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001)

[29] J S Milne, Arithmetic duality theorems, BookSurge (2006)

[30] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211

[31] J A Neisendorfer, Homotopy groups with coefficients, J. Fixed Point Theory Appl. 8 (2010) 247

[32] I A Panin, The Hurewicz theorem and $K$–theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 763, 878

[33] A Putman, Stability in the homology of congruence subgroups,

[34] D Quillen, On the cohomology and $K$–theory of the general linear groups over a finite field, Ann. of Math. 96 (1972) 552

[35] D Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, from: "Algebraic $K$–theory, I: Higher $K$–theories", Lecture Notes in Math. 341, Springer (1973) 179

[36] P Schneider, Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979) 181

[37] P Schneider, Über die Werte der Riemannschen Zetafunktion an den ganzzahligen Stellen, J. Reine Angew. Math. 313 (1980) 189

[38] P Scholze, On torsion in the cohomology of locally symmetric varieties,

[39] C Soulé, $K$–théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251

[40] C Soulé, On higher $p$–adic regulators, from: "Algebraic $K$–theory" (editors E M Friedlander, M R Stein), Lecture Notes in Math. 854, Springer (1981) 372

[41] J Tate, Duality theorems in Galois cohomology over number fields, from: "Proc. Internat. Congr. Mat. (Stockholm, 1962)", Inst. Mittag-Leffler (1963) 288

[42] V Voevodsky, On motivic cohomology with $\mathbf{Z}/l$–coefficients, Ann. of Math. 174 (2011) 401

[43] J B Wagoner, Continuous cohomology and $p$–adic $K$–theory, from: "Algebraic $K$–theory" (editor M R Stein), Lecture Notes in Math. 551, Springer (1976) 241

[44] J B Wagoner, A $p$–adic regulator problem in algebraic $K$–theory and group cohomology, Bull. Amer. Math. Soc. 10 (1984) 101

[45] C Weibel, Algebraic $K$–theory of rings of integers in local and global fields, from: "Handbook of $K$–theory, Vol. 1, 2" (editors E M Friedlander, D R Grayson), Springer (2005) 139

[46] C A Weibel, The $K$–book: An introduction to algebraic $K$–theory, Graduate Studies in Mathematics 145, Amer. Math. Soc. (2013)

[47] A Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990) 493

[48] A Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995) 443

[49] E C Zeeman, A note on a theorem of Armand Borel, Proc. Cambridge Philos. Soc. 54 (1958) 396

Cité par Sources :