Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We relate the completed cohomology groups of , where is the ring of integers of a number field, to –theory and Galois cohomology. Various consequences include showing that Borel’s stable classes become infinitely –divisible up the –congruence tower if and only if a certain –adic zeta value is nonzero. We use our results to compute (for sufficiently large ), where is the full level- congruence subgroup of .
Calegari, Frank 1
@article{GT_2015_19_6_a2, author = {Calegari, Frank}, title = {The stable homology of congruence subgroups}, journal = {Geometry & topology}, pages = {3149--3191}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2015}, doi = {10.2140/gt.2015.19.3149}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3149/} }
Calegari, Frank. The stable homology of congruence subgroups. Geometry & topology, Tome 19 (2015) no. 6, pp. 3149-3191. doi : 10.2140/gt.2015.19.3149. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3149/
[1] Galois representations attached to mod $p$ cohomology of $\mathrm{GL}(n,\mathbf{Z})$, Duke Math. J. 65 (1992) 235
,[2] Solution of the congruence subgroup problem for $\mathrm{SL}_{n} (n\geq 3)$ and $\mathrm{Sp}_{2n} (n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. (1967) 59
, , ,[3] On the $p$–adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009) 375
, , , ,[4] Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235
,[5] Pro-$p$ groups and towers of rational homology spheres, Geom. Topol. 10 (2006) 331
, ,[6] Cohomology of uniformly powerful $p$–groups, Trans. Amer. Math. Soc. 352 (2000) 2659
, ,[7] Irrationality of certain $p$–adic periods for small $p$, Int. Math. Res. Not. 2005 (2005) 1235
,[8] Automorphic forms and rational homology $3$–spheres, Geom. Topol. 10 (2006) 295
, ,[9] Hecke operators on stable cohomology,
, ,[10] Mod–$p$ cohomology growth in $p$–adic analytic towers of 3-manifolds, Groups Geom. Dyn. 5 (2011) 355
, ,[11] Completed cohomology — a survey, from: "Non-abelian fundamental groups and Iwasawa theory" (editors J Coates, M Kim, F Pop, M Saidi, P Schneider), London Math. Soc. Lecture Note Ser. 393, Cambridge Univ. Press (2012) 239
, ,[12] Modularity lifting beyond the Taylor–Wiles method,
, ,[13] A torsion Jacquet–Langlands correspondence,
, ,[14] Homology stability for $\mathrm{GL}_{n}$ of a Dedekind domain, Invent. Math. 56 (1980) 1
,[15] On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (1984) 2081
,[16] FI–modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015) 1833
, , ,[17] FI–modules over Noetherian rings, Geom. Topol. 18 (2014) 2951
, , , ,[18] Representation theory and homological stability, Adv. Math. 245 (2013) 250
, ,[19] Heuristics on class groups of number fields, from: "Number theory, Noordwijkerhout 1983" (editor H Jager), Lecture Notes in Math. 1068, Springer (1984) 33
, ,[20] Fermat's last theorem, from: "Elliptic curves, modular forms Fermat's last theorem" (editors J Coates, S T Yau), Int. Press (1997) 2
, , ,[21] Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 287 (1978)
,[22] On $K_\ast(\mathbf{Z}/p^{2}\mathbf{Z})$ and related homology groups, Trans. Amer. Math. Soc. 270 (1982) 1
, ,[23] $K$–theory of Henselian local rings and Henselian pairs, from: "Algebraic $K$–theory, commutative algebra, and algebraic geometry" (editors R K Dennis, C Pedrini, M R Stein), Contemp. Math. 126, Amer. Math. Soc. (1992) 59
,[24] Iwasawa theory for $p$–adic representations, from: "Algebraic number theory" (editors J Coates, R Greenberg, B Mazur, I Satake), Adv. Stud. Pure Math. 17, Academic Press (1989) 97
,[25] On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1
, ,[26] Groupes analytiques $p$–adiques, Inst. Hautes Études Sci. Publ. Math. (1965) 389
,[27] The group $K_{3}(Z)$ is cyclic of order forty-eight, Ann. of Math. 104 (1976) 31
, ,[28] A user's guide to spectral sequences, Cambridge Studies in Advanced Mathematics 58, Cambridge Univ. Press (2001)
,[29] Arithmetic duality theorems, BookSurge (2006)
,[30] On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211
, ,[31] Homotopy groups with coefficients, J. Fixed Point Theory Appl. 8 (2010) 247
,[32] The Hurewicz theorem and $K$–theory of complete discrete valuation rings, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 763, 878
,[33] Stability in the homology of congruence subgroups,
,[34] On the cohomology and $K$–theory of the general linear groups over a finite field, Ann. of Math. 96 (1972) 552
,[35] Finite generation of the groups $K_{i}$ of rings of algebraic integers, from: "Algebraic $K$–theory, I: Higher $K$–theories", Lecture Notes in Math. 341, Springer (1973) 179
,[36] Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979) 181
,[37] Über die Werte der Riemannschen Zetafunktion an den ganzzahligen Stellen, J. Reine Angew. Math. 313 (1980) 189
,[38] On torsion in the cohomology of locally symmetric varieties,
,[39] $K$–théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979) 251
,[40] On higher $p$–adic regulators, from: "Algebraic $K$–theory" (editors E M Friedlander, M R Stein), Lecture Notes in Math. 854, Springer (1981) 372
,[41] Duality theorems in Galois cohomology over number fields, from: "Proc. Internat. Congr. Mat. (Stockholm, 1962)", Inst. Mittag-Leffler (1963) 288
,[42] On motivic cohomology with $\mathbf{Z}/l$–coefficients, Ann. of Math. 174 (2011) 401
,[43] Continuous cohomology and $p$–adic $K$–theory, from: "Algebraic $K$–theory" (editor M R Stein), Lecture Notes in Math. 551, Springer (1976) 241
,[44] A $p$–adic regulator problem in algebraic $K$–theory and group cohomology, Bull. Amer. Math. Soc. 10 (1984) 101
,[45] Algebraic $K$–theory of rings of integers in local and global fields, from: "Handbook of $K$–theory, Vol. 1, 2" (editors E M Friedlander, D R Grayson), Springer (2005) 139
,[46] The $K$–book: An introduction to algebraic $K$–theory, Graduate Studies in Mathematics 145, Amer. Math. Soc. (2013)
,[47] The Iwasawa conjecture for totally real fields, Ann. of Math. 131 (1990) 493
,[48] Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995) 443
,[49] A note on a theorem of Armand Borel, Proc. Cambridge Philos. Soc. 54 (1958) 396
,Cité par Sources :