The homotopy theory of cyclotomic spectra
Geometry & topology, Tome 19 (2015) no. 6, pp. 3105-3147.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe spectral model category structures on the categories of cyclotomic spectra and p–cyclotomic spectra (in orthogonal spectra) with triangulated homotopy categories. We show that the functors TR and TC are corepresentable in these categories. Specifically, the derived mapping spectrum out of the sphere spectrum in the category of cyclotomic spectra corepresents the finite completion of TC and the derived mapping spectrum out of the sphere spectrum in the category of p–cyclotomic spectra corepresents the p–completion of TC(;p).

DOI : 10.2140/gt.2015.19.3105
Classification : 19D55, 18G55, 55Q91
Keywords: topological cyclic homology, cyclotomic spectrum, model category, ABC category

Blumberg, Andrew J 1 ; Mandell, Michael A 2

1 Department of Mathematics, The University of Texas, Austin, TX 78712, USA
2 Department of Mathematics, Indiana University, Rawles Hall, 831 E 3rd St, Bloomington, IN 47405, USA
@article{GT_2015_19_6_a1,
     author = {Blumberg, Andrew J and Mandell, Michael A},
     title = {The homotopy theory of cyclotomic spectra},
     journal = {Geometry & topology},
     pages = {3105--3147},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2015},
     doi = {10.2140/gt.2015.19.3105},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/}
}
TY  - JOUR
AU  - Blumberg, Andrew J
AU  - Mandell, Michael A
TI  - The homotopy theory of cyclotomic spectra
JO  - Geometry & topology
PY  - 2015
SP  - 3105
EP  - 3147
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/
DO  - 10.2140/gt.2015.19.3105
ID  - GT_2015_19_6_a1
ER  - 
%0 Journal Article
%A Blumberg, Andrew J
%A Mandell, Michael A
%T The homotopy theory of cyclotomic spectra
%J Geometry & topology
%D 2015
%P 3105-3147
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/
%R 10.2140/gt.2015.19.3105
%F GT_2015_19_6_a1
Blumberg, Andrew J; Mandell, Michael A. The homotopy theory of cyclotomic spectra. Geometry & topology, Tome 19 (2015) no. 6, pp. 3105-3147. doi : 10.2140/gt.2015.19.3105. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/

[1] A J Blumberg, M A Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012) 1053

[2] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)

[3] L Hesselholt, I Madsen, On the $K$–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29

[4] L Hesselholt, I Madsen, On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1

[5] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, Amer. Math. Soc. (2003)

[6] M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math. Soc. (1999)

[7] D Kaledin, Motivic structures in non-commutative geometry, from: "Proceedings of the International Congress of Mathematicians, II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 461

[8] M A Mandell, J P May, Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 755, Amer. Math. Soc. (2002)

[9] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441

[10] J P May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91, Amer. Math. Soc. (1996)

[11] J P May, K Ponto, More concise algebraic topology: Localization, completion, and model categories, University of Chicago Press (2012)

[12] D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)

[13] A Radulescu-Banu, Cofibrations in homotopy theory, preprint (2009)

Cité par Sources :