Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe spectral model category structures on the categories of cyclotomic spectra and –cyclotomic spectra (in orthogonal spectra) with triangulated homotopy categories. We show that the functors and are corepresentable in these categories. Specifically, the derived mapping spectrum out of the sphere spectrum in the category of cyclotomic spectra corepresents the finite completion of and the derived mapping spectrum out of the sphere spectrum in the category of –cyclotomic spectra corepresents the –completion of .
Blumberg, Andrew J 1 ; Mandell, Michael A 2
@article{GT_2015_19_6_a1, author = {Blumberg, Andrew J and Mandell, Michael A}, title = {The homotopy theory of cyclotomic spectra}, journal = {Geometry & topology}, pages = {3105--3147}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2015}, doi = {10.2140/gt.2015.19.3105}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/} }
TY - JOUR AU - Blumberg, Andrew J AU - Mandell, Michael A TI - The homotopy theory of cyclotomic spectra JO - Geometry & topology PY - 2015 SP - 3105 EP - 3147 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/ DO - 10.2140/gt.2015.19.3105 ID - GT_2015_19_6_a1 ER -
Blumberg, Andrew J; Mandell, Michael A. The homotopy theory of cyclotomic spectra. Geometry & topology, Tome 19 (2015) no. 6, pp. 3105-3147. doi : 10.2140/gt.2015.19.3105. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3105/
[1] Localization theorems in topological Hochschild homology and topological cyclic homology, Geom. Topol. 16 (2012) 1053
, ,[2] Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)
, ,[3] On the $K$–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29
, ,[4] On the $K$–theory of local fields, Ann. of Math. 158 (2003) 1
, ,[5] Model categories and their localizations, Mathematical Surveys and Monographs 99, Amer. Math. Soc. (2003)
,[6] Model categories, Mathematical Surveys and Monographs 63, Amer. Math. Soc. (1999)
,[7] Motivic structures in non-commutative geometry, from: "Proceedings of the International Congress of Mathematicians, II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 461
,[8] Equivariant orthogonal spectra and $S$–modules, Mem. Amer. Math. Soc. 755, Amer. Math. Soc. (2002)
, ,[9] Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441
, , , ,[10] Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91, Amer. Math. Soc. (1996)
,[11] More concise algebraic topology: Localization, completion, and model categories, University of Chicago Press (2012)
, ,[12] Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)
,[13] Cofibrations in homotopy theory, preprint (2009)
,Cité par Sources :