Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the relationship between the HOMFLY and knot homologies introduced by Khovanov and Rozansky. For each , we show there is a spectral sequence which starts at the HOMFLY homology and converges to the homology. As an application, we determine the KR–homology of knots with 9 crossings or fewer.
Rasmussen, Jacob 1
@article{GT_2015_19_6_a0, author = {Rasmussen, Jacob}, title = {Some differentials on {Khovanov{\textendash}Rozansky} homology}, journal = {Geometry & topology}, pages = {3031--3104}, publisher = {mathdoc}, volume = {19}, number = {6}, year = {2015}, doi = {10.2140/gt.2015.19.3031}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3031/} }
Rasmussen, Jacob. Some differentials on Khovanov–Rozansky homology. Geometry & topology, Tome 19 (2015) no. 6, pp. 3031-3104. doi : 10.2140/gt.2015.19.3031. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.3031/
[1] On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337
,[2] Khovanov's homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443
,[3] The superpolynomial for knot homologies, Experiment. Math. 15 (2006) 129
, , ,[4] Note on Khovanov link cohomology,
,[5] Khovanov–Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53
, , ,[6] Knotscape (1999)
, ,[7] On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989) 311
,[8] State models and the Jones polynomial, Topology 26 (1987) 395
,[9] A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359
,[10] Patterns in knot cohomology, I, Experiment. Math. 12 (2003) 365
,[11] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math. 18 (2007) 869
,[12] Matrix factorizations and link homology, Fund. Math. 199 (2008) 1
, ,[13] Matrix factorizations and link homology, II, Geom. Topol. 12 (2008) 1387
, ,[14] Algebra, Graduate Texts in Mathematics 211, Springer (2002)
,[15] The support of the Khovanov's invariants for alternating knots,
,[16] An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554
,[17] The universal $\mathrm{sl}_3$–link homology, Algebr. Geom. Topol. 7 (2007) 1135
, ,[18] User's guide to spectral sequences, Mathematics Lecture Series 12, Publish or Perish (1985)
,[19] Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. 44 (1998) 325
, , ,[20] Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225
, ,[21] Khovanov–Rozansky homology of two-bridge knots and links, Duke Math. J. 136 (2007) 551
,[22] Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)
,[23] Torsion invariants of $\mathrm{Spin}^c$–structures on $3$–manifolds, Math. Res. Lett. 4 (1997) 679
,[24] KR.m2 (2005)
,[25] Braids, transversal links and the Khovanov–Rozansky theory, Trans. Amer. Math. Soc. 360 (2008) 3365
,Cité par Sources :