Erratum to “Deriving Deligne–Mumford stacks with perfect obstruction theories”
Geometry & topology, Tome 19 (2015) no. 5, pp. 2993-2994.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This erratum corrects a mistake in “Deriving Deligne–Mumford stacks with perfect obstruction theories” published in Geom. Topol. 17 (2013) 73–92.

DOI : 10.2140/gt.2015.19.2993
Classification : 14A20, 18G55, 55P43
Keywords: perfect obstruction theory, derived moduli space

Schürg, Timo 1

1 Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
@article{GT_2015_19_5_a12,
     author = {Sch\"urg, Timo},
     title = {Erratum to {{\textquotedblleft}Deriving} {Deligne{\textendash}Mumford} stacks with perfect obstruction theories{\textquotedblright}},
     journal = {Geometry & topology},
     pages = {2993--2994},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2993},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2993/}
}
TY  - JOUR
AU  - Schürg, Timo
TI  - Erratum to “Deriving Deligne–Mumford stacks with perfect obstruction theories”
JO  - Geometry & topology
PY  - 2015
SP  - 2993
EP  - 2994
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2993/
DO  - 10.2140/gt.2015.19.2993
ID  - GT_2015_19_5_a12
ER  - 
%0 Journal Article
%A Schürg, Timo
%T Erratum to “Deriving Deligne–Mumford stacks with perfect obstruction theories”
%J Geometry & topology
%D 2015
%P 2993-2994
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2993/
%R 10.2140/gt.2015.19.2993
%F GT_2015_19_5_a12
Schürg, Timo. Erratum to “Deriving Deligne–Mumford stacks with perfect obstruction theories”. Geometry & topology, Tome 19 (2015) no. 5, pp. 2993-2994. doi : 10.2140/gt.2015.19.2993. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2993/

[1] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[2] T Schürg, Deriving Deligne–Mumford stacks with perfect obstruction theories, Geom. Topol. 17 (2013) 73 | DOI

[3] T Schürg, Deriving Deligne–Mumford stacks with perfect obstruction theories, (2014)

Cité par Sources :