On the construction problem for Hodge numbers
Geometry & topology, Tome 19 (2015) no. 1, pp. 295-342.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For any symmetric collection (hp,q)p+q=k of natural numbers, we construct a smooth complex projective variety X whose weight-k Hodge structure has Hodge numbers hp,q(X) = hp,q; if k = 2m is even, then we have to impose that hm,m is bigger than some quadratic bound in m. Combining these results for different weights, we solve the construction problem for the truncated Hodge diamond under two additional assumptions. Our results lead to a complete classification of all nontrivial dominations among Hodge numbers of Kähler manifolds.

DOI : 10.2140/gt.2015.19.295
Classification : 32Q15, 14C30, 51M15
Keywords: construction problem, Kähler geometry, Hodge numbers

Schreieder, Stefan 1

1 Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany, Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
@article{GT_2015_19_1_a5,
     author = {Schreieder, Stefan},
     title = {On the construction problem for {Hodge} numbers},
     journal = {Geometry & topology},
     pages = {295--342},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.295},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.295/}
}
TY  - JOUR
AU  - Schreieder, Stefan
TI  - On the construction problem for Hodge numbers
JO  - Geometry & topology
PY  - 2015
SP  - 295
EP  - 342
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.295/
DO  - 10.2140/gt.2015.19.295
ID  - GT_2015_19_1_a5
ER  - 
%0 Journal Article
%A Schreieder, Stefan
%T On the construction problem for Hodge numbers
%J Geometry & topology
%D 2015
%P 295-342
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.295/
%R 10.2140/gt.2015.19.295
%F GT_2015_19_1_a5
Schreieder, Stefan. On the construction problem for Hodge numbers. Geometry & topology, Tome 19 (2015) no. 1, pp. 295-342. doi : 10.2140/gt.2015.19.295. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.295/

[1] J Amorós, I Biswas, Compact Kähler manifolds with elliptic homotopy type, Adv. Math. 224 (2010) 1167

[2] M F Atiyah, F Hirzebruch, Analytic cycles on complex manifolds, Topology 1 (1962) 25

[3] W P Barth, K Hulek, C A M Peters, A Van De Ven, Compact complex surfaces, 4, Springer (2004)

[4] F Catanese, M Schneider, Bounds for stable bundles and degrees of Weierstrass schemes, Math. Ann. 293 (1992) 579

[5] M C Chang, Distributions of Chern numbers of complete intersection three-folds, Geom. Funct. Anal. 7 (1997) 861

[6] M C Chang, A F Lopez, A linear bound on the Euler number of threefolds of Calabi–Yau and of general type, Manuscripta Math. 105 (2001) 47

[7] S Cynk, K Hulek, Construction and examples of higher-dimensional modular Calabi–Yau manifolds, Canad. Math. Bull. 50 (2007) 486

[8] J P Demailly, T Peternell, M Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994) 295

[9] B Hunt, Complex manifold geography in dimension 2 and 3, J. Differential Geom. 30 (1989) 51

[10] V A Iskovskikh, Y G Prokhorov, Fano varieties, from: "Algebraic geometry, V" (editor I R Shafarevich), Encyclopaedia Math. Sci. 47, Springer (1999) 1

[11] J Kollár, Lectures on resolution of singularities, 166, Princeton Univ. Press (2007)

[12] J Kollár, Y Miyaoka, S Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992) 765

[13] D Kotschick, S Schreieder, The Hodge ring of Kähler manifolds, Compositio Math. 149 (2013) 637

[14] R Lazarsfeld, Positivity in algebraic geometry, II, 49, Springer (2004)

[15] S Lee, On Maşek’s criterion on very ampleness, Comm. Algebra 30 (2002) 4383

[16] A S Libgober, J W Wood, Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Differential Geom. 32 (1990) 139

[17] J P Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1955–1956) 1

[18] J P Serre, Sur la topologie des variétés algébriques en caractéristique p, from: "Symposium internacional de topología algebraica", Universidad Nacional Autónoma de México and UNESCO (1958) 24

[19] I R Shafarevich, Basic algebraic geometry 1, Springer (1994)

[20] C Simpson, The construction problem in Kähler geometry, from: "Different faces of geometry", Int. Math. Ser. 3, Kluwer (2004) 365

[21] C Voisin, Hodge theory and complex algebraic geometry, I, 76, Cambridge Univ. Press (2002)

[22] S T Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977) 1798

Cité par Sources :