Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For any symmetric collection of natural numbers, we construct a smooth complex projective variety whose weight- Hodge structure has Hodge numbers ; if is even, then we have to impose that is bigger than some quadratic bound in . Combining these results for different weights, we solve the construction problem for the truncated Hodge diamond under two additional assumptions. Our results lead to a complete classification of all nontrivial dominations among Hodge numbers of Kähler manifolds.
Schreieder, Stefan 1
@article{GT_2015_19_1_a5, author = {Schreieder, Stefan}, title = {On the construction problem for {Hodge} numbers}, journal = {Geometry & topology}, pages = {295--342}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, doi = {10.2140/gt.2015.19.295}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.295/} }
Schreieder, Stefan. On the construction problem for Hodge numbers. Geometry & topology, Tome 19 (2015) no. 1, pp. 295-342. doi : 10.2140/gt.2015.19.295. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.295/
[1] Compact Kähler manifolds with elliptic homotopy type, Adv. Math. 224 (2010) 1167
, ,[2] Analytic cycles on complex manifolds, Topology 1 (1962) 25
, ,[3] Compact complex surfaces, 4, Springer (2004)
, , , ,[4] Bounds for stable bundles and degrees of Weierstrass schemes, Math. Ann. 293 (1992) 579
, ,[5] Distributions of Chern numbers of complete intersection three-folds, Geom. Funct. Anal. 7 (1997) 861
,[6] A linear bound on the Euler number of threefolds of Calabi–Yau and of general type, Manuscripta Math. 105 (2001) 47
, ,[7] Construction and examples of higher-dimensional modular Calabi–Yau manifolds, Canad. Math. Bull. 50 (2007) 486
, ,[8] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994) 295
, , ,[9] Complex manifold geography in dimension 2 and 3, J. Differential Geom. 30 (1989) 51
,[10] Fano varieties, from: "Algebraic geometry, V" (editor I R Shafarevich), Encyclopaedia Math. Sci. 47, Springer (1999) 1
, ,[11] Lectures on resolution of singularities, 166, Princeton Univ. Press (2007)
,[12] Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992) 765
, , ,[13] The Hodge ring of Kähler manifolds, Compositio Math. 149 (2013) 637
, ,[14] Positivity in algebraic geometry, II, 49, Springer (2004)
,[15] On Maşek’s criterion on very ampleness, Comm. Algebra 30 (2002) 4383
,[16] Uniqueness of the complex structure on Kähler manifolds of certain homotopy types, J. Differential Geom. 32 (1990) 139
, ,[17] Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6 (1955–1956) 1
,[18] Sur la topologie des variétés algébriques en caractéristique p, from: "Symposium internacional de topología algebraica", Universidad Nacional Autónoma de México and UNESCO (1958) 24
,[19] Basic algebraic geometry 1, Springer (1994)
,[20] The construction problem in Kähler geometry, from: "Different faces of geometry", Int. Math. Ser. 3, Kluwer (2004) 365
,[21] Hodge theory and complex algebraic geometry, I, 76, Cambridge Univ. Press (2002)
,[22] Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A. 74 (1977) 1798
,Cité par Sources :