New invariants of G2–structures
Geometry & topology, Tome 19 (2015) no. 5, pp. 2949-2992.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a 48–valued homotopy invariant ν(φ) of a G2–structure φ on the tangent bundle of a closed 7–manifold in terms of the signature and Euler characteristic of a coboundary with a Spin(7)–structure. For manifolds of holonomy G2 obtained by the twisted connected sum construction, the associated torsion-free G2–structure always has ν(φ) = 24. Some holonomy G2 examples constructed by Joyce by desingularising orbifolds have odd ν.

We define a further homotopy invariant ξ(φ) such that if M is 2–connected then the pair (ν,ξ) determines a G2–structure up to homotopy and diffeomorphism. The class of a G2–structure is determined by ν on its own when the greatest divisor of p1(M) modulo torsion divides 224; this sufficient condition holds for many twisted connected sum G2–manifolds.

We also prove that the parametric h–principle holds for coclosed G2–structures.

DOI : 10.2140/gt.2015.19.2949
Classification : 53C10, 57R15, 53C25, 53C27
Keywords: $G_2$–structures, spin geometry, diffeomorphisms, $h$–principle, exceptional holonomy

Crowley, Diarmuid 1 ; Nordström, Johannes 2

1 Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK
2 Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
@article{GT_2015_19_5_a11,
     author = {Crowley, Diarmuid and Nordstr\"om, Johannes},
     title = {New invariants of {G2{\textendash}structures}},
     journal = {Geometry & topology},
     pages = {2949--2992},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2949},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2949/}
}
TY  - JOUR
AU  - Crowley, Diarmuid
AU  - Nordström, Johannes
TI  - New invariants of G2–structures
JO  - Geometry & topology
PY  - 2015
SP  - 2949
EP  - 2992
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2949/
DO  - 10.2140/gt.2015.19.2949
ID  - GT_2015_19_5_a11
ER  - 
%0 Journal Article
%A Crowley, Diarmuid
%A Nordström, Johannes
%T New invariants of G2–structures
%J Geometry & topology
%D 2015
%P 2949-2992
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2949/
%R 10.2140/gt.2015.19.2949
%F GT_2015_19_5_a11
Crowley, Diarmuid; Nordström, Johannes. New invariants of G2–structures. Geometry & topology, Tome 19 (2015) no. 5, pp. 2949-2992. doi : 10.2140/gt.2015.19.2949. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2949/

[1] M F Atiyah, I M Singer, The index of elliptic operators, III, Ann. of Math. 87 (1968) 546 | DOI

[2] J C Baez, The octonions, Bull. Amer. Math. Soc. 39 (2002) 145 | DOI

[3] M Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279

[4] R L Bryant, Some remarks on G2–structures, from: "Proceedings of Gökova Geometry–Topology Conference 2005" (editors S Akbulut, T Önder, R J Stern), GGT (2006) 75

[5] R L Bryant, Non-embedding and non-extension results in special holonomy, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 346 | DOI

[6] R L Bryant, S M Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829 | DOI

[7] R Bryant, F Xu, Laplacian flow for closed G2–structures : Short time behavior,

[8] M Čadek, M Crabb, J Vanžura, Obstruction theory on 8–manifolds, Manuscripta Math. 127 (2008) 167 | DOI

[9] E Calabi, Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. 12 (1979) 269

[10] A Corti, M Haskins, J Nordström, T Pacini, G2–manifolds and associative submanifolds via semi-Fano 3–folds, Duke Math. J. 164 (2015) 1971 | DOI

[11] D Crowley, J Nordström, The classification of 2–connected 7–manifolds,

[12] D Crowley, J Nordström, Exotic G2–manifolds,

[13] H Donnelly, Spectral geometry and invariants from differential topology, Bull. London Math. Soc. 7 (1975) 147 | DOI

[14] J Eells Jr., N Kuiper H., An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1962) 93 | DOI

[15] Y Eliashberg, N Mishachev, Introduction to the h–principle, 48, Amer. Math. Soc. (2002) | DOI

[16] M Fernández, A Gray, Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19 | DOI

[17] A Gray, Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969) 465 | DOI

[18] A Gray, P S Green, Sphere transitive structures and the triality automorphism, Pacific J. Math. 34 (1970) 83 | DOI

[19] S Grigorian, Short-time behaviour of a modified Laplacian coflow of G2–structures, Adv. Math. 248 (2013) 378 | DOI

[20] R Harvey, H B Lawson Jr., Calibrated geometries, Acta Math. 148 (1982) 47 | DOI

[21] N Hitchin, Stable forms and special metrics, from: "Global differential geometry : The mathematical legacy of Alfred Gray" (editors M Fernández, J A Wolf), Contemp. Math. 288, Amer. Math. Soc. (2001) 70 | DOI

[22] D D Joyce, Compact Riemannian 7–manifolds with holonomy G2, I, II, J. Differential Geom. 43 (1996) 291, 329

[23] D D Joyce, Compact manifolds with special holonomy, Oxford University Press (2000)

[24] A Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125 | DOI

[25] A Kovalev, J Nordström, Asymptotically cylindrical 7–manifolds of holonomy G2 with applications to compact irreducible G2–manifolds, Ann. Global Anal. Geom. 38 (2010) 221 | DOI

[26] H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989)

[27] H V Lê, Existence of symplectic 3–forms on 7–manifolds, preprint (2007)

[28] J Milnor, On manifolds homeomorphic to the 7–sphere, Ann. of Math. 64 (1956) 399 | DOI

[29] J Milnor, Spin structures on manifolds, Enseignement Math. 9 (1963) 198

[30] J Milnor, D Husemoller, Symmetric bilinear forms, 73, Springer (1973)

[31] S Salamon, Riemannian geometry and holonomy groups, 201, Longman (1989)

[32] C T C Wall, Non-additivity of the signature, Invent. Math. 7 (1969) 269 | DOI

[33] H Weiss, F Witt, Energy functionals and soliton equations for G2–forms, Ann. Global Anal. Geom. 42 (2012) 585 | DOI

[34] F Witt, Generalised G2–manifolds, Comm. Math. Phys. 265 (2006) 275 | DOI

[35] F Xu, R Ye, Existence, convergence and limit map of the Laplacian flow, preprint (2009)

Cité par Sources :