Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define a –valued homotopy invariant of a –structure on the tangent bundle of a closed –manifold in terms of the signature and Euler characteristic of a coboundary with a –structure. For manifolds of holonomy obtained by the twisted connected sum construction, the associated torsion-free –structure always has . Some holonomy examples constructed by Joyce by desingularising orbifolds have odd .
We define a further homotopy invariant such that if is –connected then the pair determines a –structure up to homotopy and diffeomorphism. The class of a –structure is determined by on its own when the greatest divisor of modulo torsion divides 224; this sufficient condition holds for many twisted connected sum –manifolds.
We also prove that the parametric –principle holds for coclosed –structures.
Crowley, Diarmuid 1 ; Nordström, Johannes 2
@article{GT_2015_19_5_a11, author = {Crowley, Diarmuid and Nordstr\"om, Johannes}, title = {New invariants of {G2{\textendash}structures}}, journal = {Geometry & topology}, pages = {2949--2992}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2949}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2949/} }
Crowley, Diarmuid; Nordström, Johannes. New invariants of G2–structures. Geometry & topology, Tome 19 (2015) no. 5, pp. 2949-2992. doi : 10.2140/gt.2015.19.2949. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2949/
[1] The index of elliptic operators, III, Ann. of Math. 87 (1968) 546 | DOI
, ,[2] The octonions, Bull. Amer. Math. Soc. 39 (2002) 145 | DOI
,[3] Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279
,[4] Some remarks on G2–structures, from: "Proceedings of Gökova Geometry–Topology Conference 2005" (editors S Akbulut, T Önder, R J Stern), GGT (2006) 75
,[5] Non-embedding and non-extension results in special holonomy, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 346 | DOI
,[6] On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829 | DOI
, ,[7] Laplacian flow for closed G2–structures : Short time behavior,
, ,[8] Obstruction theory on 8–manifolds, Manuscripta Math. 127 (2008) 167 | DOI
, , ,[9] Métriques kählériennes et fibrés holomorphes, Ann. Sci. École Norm. Sup. 12 (1979) 269
,[10] G2–manifolds and associative submanifolds via semi-Fano 3–folds, Duke Math. J. 164 (2015) 1971 | DOI
, , , ,[11] The classification of 2–connected 7–manifolds,
, ,[12] Exotic G2–manifolds,
, ,[13] Spectral geometry and invariants from differential topology, Bull. London Math. Soc. 7 (1975) 147 | DOI
,[14] An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1962) 93 | DOI
, ,[15] Introduction to the h–principle, 48, Amer. Math. Soc. (2002) | DOI
, ,[16] Riemannian manifolds with structure group G2, Ann. Mat. Pura Appl. 132 (1982) 19 | DOI
, ,[17] Vector cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969) 465 | DOI
,[18] Sphere transitive structures and the triality automorphism, Pacific J. Math. 34 (1970) 83 | DOI
, ,[19] Short-time behaviour of a modified Laplacian coflow of G2–structures, Adv. Math. 248 (2013) 378 | DOI
,[20] Calibrated geometries, Acta Math. 148 (1982) 47 | DOI
, ,[21] Stable forms and special metrics, from: "Global differential geometry : The mathematical legacy of Alfred Gray" (editors M Fernández, J A Wolf), Contemp. Math. 288, Amer. Math. Soc. (2001) 70 | DOI
,[22] Compact Riemannian 7–manifolds with holonomy G2, I, II, J. Differential Geom. 43 (1996) 291, 329
,[23] Compact manifolds with special holonomy, Oxford University Press (2000)
,[24] Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125 | DOI
,[25] Asymptotically cylindrical 7–manifolds of holonomy G2 with applications to compact irreducible G2–manifolds, Ann. Global Anal. Geom. 38 (2010) 221 | DOI
, ,[26] Spin geometry, 38, Princeton Univ. Press (1989)
, ,[27] Existence of symplectic 3–forms on 7–manifolds, preprint (2007)
,[28] On manifolds homeomorphic to the 7–sphere, Ann. of Math. 64 (1956) 399 | DOI
,[29] Spin structures on manifolds, Enseignement Math. 9 (1963) 198
,[30] Symmetric bilinear forms, 73, Springer (1973)
, ,[31] Riemannian geometry and holonomy groups, 201, Longman (1989)
,[32] Non-additivity of the signature, Invent. Math. 7 (1969) 269 | DOI
,[33] Energy functionals and soliton equations for G2–forms, Ann. Global Anal. Geom. 42 (2012) 585 | DOI
, ,[34] Generalised G2–manifolds, Comm. Math. Phys. 265 (2006) 275 | DOI
,[35] Existence, convergence and limit map of the Laplacian flow, preprint (2009)
, ,Cité par Sources :