Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the long-time behavior of the Kähler–Ricci flow on compact Kähler manifolds. We give an almost complete classification of the singularity type of the flow at infinity, depending only on the underlying complex structure. If the manifold is of intermediate Kodaira dimension and has semiample canonical bundle, so it is fibered by Calabi–Yau varieties, we show that parabolic rescalings around any point on a smooth fiber converge smoothly to a unique limit, which is the product of a Ricci-flat metric on the fiber and a flat metric on Euclidean space. An analogous result holds for collapsing limits of Ricci-flat Kähler metrics.
Tosatti, Valentino 1 ; Zhang, Yuguang 2
@article{GT_2015_19_5_a10, author = {Tosatti, Valentino and Zhang, Yuguang}, title = {Infinite-time singularities of the {K\"ahler{\textendash}Ricci} flow}, journal = {Geometry & topology}, pages = {2925--2948}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2925}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2925/} }
TY - JOUR AU - Tosatti, Valentino AU - Zhang, Yuguang TI - Infinite-time singularities of the Kähler–Ricci flow JO - Geometry & topology PY - 2015 SP - 2925 EP - 2948 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2925/ DO - 10.2140/gt.2015.19.2925 ID - GT_2015_19_5_a10 ER -
Tosatti, Valentino; Zhang, Yuguang. Infinite-time singularities of the Kähler–Ricci flow. Geometry & topology, Tome 19 (2015) no. 5, pp. 2925-2948. doi : 10.2140/gt.2015.19.2925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2925/
[1] Long-time analysis of 3–dimensional Ricci flow, III,
,[2] Compact complex surfaces, 4, Springer (2004) | DOI
, , , ,[3] Deformation of Kähler metrics to Kähler–Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985) 359 | DOI
,[4] Deformation in the large of some complex manifolds, I, Ann. Mat. Pura Appl. 183 (2004) 261 | DOI
,[5] The collapsing rate of the Kähler–Ricci flow with regular infinite time singularity, J. Reine Angew. Math. 703 (2015) 95 | DOI
, ,[6] Smooth four-manifolds and complex surfaces, 27, Springer (1994) | DOI
, ,[7] Collapsing of products along the Kähler–Ricci flow, Trans. Amer. Math. Soc. 366 (2014) 3907 | DOI
,[8] Collapsing of abelian fibered Calabi–Yau manifolds, Duke Math. J. 162 (2013) 517 | DOI
, , ,[9] Gromov–Hausdorff collapsing of Calabi–Yau manifolds,
, , ,[10] The Ricci flow on surfaces, from: "Mathematics and general relativity" (editor J A Isenberg), Contemp. Math. 71, Amer. Math. Soc. (1988) 237 | DOI
,[11] Remarks on the collapsing of torus fibered Calabi–Yau manifolds,
, ,[12] On the length of an extremal rational curve, Invent. Math. 105 (1991) 609 | DOI
,[13] Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008) 419 | DOI
,[14] Complex manifolds and deformation of complex structures, Springer, Berlin (2005)
,[15] On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007) 627 | DOI
,[16] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004)
, ,[17] On stability and the convergence of the Kähler–Ricci flow, J. Differential Geom. 72 (2006) 149
, ,[18] A priori estimates and a Liouville theorem for complex Monge–Ampère equations, Math. Z. 186 (1984) 57 | DOI
, ,[19] Interior derivative estimates for the Kähler–Ricci flow, Pacific J. Math. 257 (2012) 491 | DOI
, ,[20] Bounding scalar curvature for global solutions of the Kähler–Ricci flow,
, ,[21] The Kähler–Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007) 609 | DOI
, ,[22] Canonical measures and Kähler–Ricci flow, J. Amer. Math. Soc. 25 (2012) 303 | DOI
, ,[23] On the Kähler–Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006) 179 | DOI
, ,[24] Adiabatic limits of Ricci-flat Kähler metrics, J. Differential Geom. 84 (2010) 427
,[25] Degenerations of Calabi–Yau metrics, Acta Phys. Polon. B Proc. Suppl. 4 (2011) 495 | DOI
,[26] Calabi–Yau manifolds and their degenerations, Ann. N. Y. Acad. Sci. 1260 (2012) 8 | DOI
,[27] The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits,
, , ,[28] A Liouville theorem for the complex Monge–Ampère equation,
,[29] A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978) 197 | DOI
,[30] On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339 | DOI
,[31] Convergence of Kähler manifolds and calibrated fibrations, PhD thesis, Nankai Institute of Mathematics (2006)
,Cité par Sources :