Surface bundles over surfaces with arbitrarily many fiberings
Geometry & topology, Tome 19 (2015) no. 5, pp. 2901-2923.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we give the first example of a surface bundle over a surface with at least three fiberings. In fact, for each n 3 we construct 4–manifolds E admitting at least n distinct fiberings pi: E Σgi as a surface bundle over a surface with base and fiber both closed surfaces of negative Euler characteristic. We give examples of surface bundles admitting multiple fiberings for which the monodromy representation has image in the Torelli group, showing the necessity of all of the assumptions made in the main theorem of a recent paper of ours. Our examples show that the number of surface bundle structures that can be realized on a 4–manifold E with Euler characteristic d grows exponentially with d.

DOI : 10.2140/gt.2015.19.2901
Classification : 57R22
Keywords: surface bundles

Salter, Nick 1

1 Department of Mathematics, University of Chicago, 5734 S University Avenue, Chicago, IL 60637, USA
@article{GT_2015_19_5_a9,
     author = {Salter, Nick},
     title = {Surface bundles over surfaces with arbitrarily many fiberings},
     journal = {Geometry & topology},
     pages = {2901--2923},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2901},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2901/}
}
TY  - JOUR
AU  - Salter, Nick
TI  - Surface bundles over surfaces with arbitrarily many fiberings
JO  - Geometry & topology
PY  - 2015
SP  - 2901
EP  - 2923
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2901/
DO  - 10.2140/gt.2015.19.2901
ID  - GT_2015_19_5_a9
ER  - 
%0 Journal Article
%A Salter, Nick
%T Surface bundles over surfaces with arbitrarily many fiberings
%J Geometry & topology
%D 2015
%P 2901-2923
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2901/
%R 10.2140/gt.2015.19.2901
%F GT_2015_19_5_a9
Salter, Nick. Surface bundles over surfaces with arbitrarily many fiberings. Geometry & topology, Tome 19 (2015) no. 5, pp. 2901-2923. doi : 10.2140/gt.2015.19.2901. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2901/

[1] M F Atiyah, The signature of fibre-bundles, from: "Global Analysis (Papers in Honor of K Kodaira)", Univ. Tokyo Press (1969) 73

[2] R I Baykur, D Margalit, Lefschetz fibrations and Torelli groups,

[3] R I Baykur, D Margalit, Indecomposable surface bundles over surfaces, J. Topol. Anal. 5 (2013) 161 | DOI

[4] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012)

[5] J A Hillman, Four-manifolds, geometries and knots, 5 (2002)

[6] F E A Johnson, A rigidity theorem for group extensions, Arch. Math. Basel 73 (1999) 81 | DOI

[7] K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207 | DOI

[8] S Morita, Geometry of characteristic classes, 199, Amer. Math. Soc. (2001)

[9] D A Neumann, 3–manifolds fibering over S1, Proc. Amer. Math. Soc. 58 (1976) 353 | DOI

[10] I Rivin, Rigidity of fibering, (2011)

[11] T Sakasai, Lagrangian mapping class groups from a group homological point of view, Algebr. Geom. Topol. 12 (2012) 267 | DOI

[12] N Salter, Cup products, the Johnson homomorphism, and surface bundles over surfaces with multiple fiberings,

[13] H Shiga, On monodromies of holomorphic families of Riemann surfaces and modular transformations, Math. Proc. Cambridge Philos. Soc. 122 (1997) 541 | DOI

[14] W P Thurston, A norm for the homology of 3–manifolds, 339, Amer. Math. Soc. (1986)

[15] J L Tollefson, 3–manifolds fibering over S1 with nonunique connected fiber, Proc. Amer. Math. Soc. 21 (1969) 79 | DOI

Cité par Sources :