Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a free-by-cyclic group determined by any outer automorphism which is represented by an expanding irreducible train-track map , we construct a –complex called the folded mapping torus of , and equip it with a semiflow. We show that enjoys many similar properties to those proven by Thurston and Fried for the mapping torus of a pseudo-Anosov homeomorphism. In particular, we construct an open, convex cone containing the homomorphism having , a homology class , and a continuous, convex, homogeneous of degree function with the following properties. Given any primitive integral class there is a graph such that:
Dowdall, Spencer 1 ; Kapovich, Ilya 2 ; Leininger, Christopher J 2
@article{GT_2015_19_5_a8, author = {Dowdall, Spencer and Kapovich, Ilya and Leininger, Christopher J}, title = {Dynamics on free-by-cyclic groups}, journal = {Geometry & topology}, pages = {2801--2899}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2801}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/} }
TY - JOUR AU - Dowdall, Spencer AU - Kapovich, Ilya AU - Leininger, Christopher J TI - Dynamics on free-by-cyclic groups JO - Geometry & topology PY - 2015 SP - 2801 EP - 2899 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/ DO - 10.2140/gt.2015.19.2801 ID - GT_2015_19_5_a8 ER -
Dowdall, Spencer; Kapovich, Ilya; Leininger, Christopher J. Dynamics on free-by-cyclic groups. Geometry & topology, Tome 19 (2015) no. 5, pp. 2801-2899. doi : 10.2140/gt.2015.19.2801. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/
[1] The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128 (1959) 647
,[2] Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 | DOI
,[3] Digraphs and cycle polynomials for free-by-cyclic groups, Geom. Topol. 19 (2015) 1111 | DOI
, , ,[4] Mapping tori of small dilatation expanding train-track maps, Topology Appl. 180 (2015) 44 | DOI
, ,[5] Minimizing topological entropy for continuous maps on graphs, Ergodic Theory Dynam. Systems 20 (2000) 1559 | DOI
, , ,[6] Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 | DOI
, ,[7] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85
, ,[8] Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 | DOI
, ,[9] Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI
, ,[10] A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451 | DOI
, , ,[11] Differential forms in algebraic topology, 82, Springer (1982)
, ,[12] Topological entropy and axiom A, from: "Global Analysis", Proc. Symp. Pure Math. 14, Amer. Math. Soc. (1970) 23
,[13] Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000) 1071 | DOI
,[14] Computing triangulations of mapping tori of surface homeomorphisms, Experiment. Math. 10 (2001) 571 | DOI
, ,[15] Mapping tori with first Betti number at least two, J. Math. Soc. Japan 59 (2007) 351 | DOI
,[16] Statistics and compression of scl, Ergodic Theory Dynam. Systems 35 (2015) 64 | DOI
, ,[17] Twisting out fully irreducible automorphisms, Geom. Funct. Anal. 20 (2010) 657 | DOI
, ,[18] Ergodic theory on compact spaces, 527, Springer (1976) | DOI
, , ,[19] McMullen polynomials and Lipschitz flows for free-by-cyclic groups,
, , ,[20] Dynamics on free-by-cyclic groups, (2013)
, , ,[21] Unbounded asymmetry of stretch factors, C. R. Math. Acad. Sci. Paris 352 (2014) 885 | DOI
, , ,[22] Entropy in dynamical systems, 18, Cambridge Univ. Press (2011) | DOI
,[23] Alexander and Thurston norms of fibered 3–manifolds, Pacific J. Math. 200 (2001) 43 | DOI
,[24] Small dilatation pseudo-Anosov homeomorphisms and 3–manifolds, Adv. Math. 228 (2011) 1466 | DOI
, , ,[25] Closed 1–forms in topology and geometric group theory, Uspekhi Mat. Nauk 65 (2010) 145 | DOI
, , ,[26] Travaux de Thurston sur les surfaces, 66–67, Soc. Math. France (1979) 284
, , , editors,[27] Mapping tori of free group automorphisms are coherent, Ann. of Math. 149 (1999) 1061 | DOI
, ,[28] Metric properties of outer space, Publ. Mat. 55 (2011) 433 | DOI
, ,[29] Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982) 237 | DOI
,[30] The geometry of cross sections to flows, Topology 21 (1982) 353 | DOI
,[31] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[32] Dynamical 2–complexes, Geometriae Dedicata 88 (2001) 283 | DOI
,[33] Feuilletages de 2–complexes, Ann. Fac. Sci. Toulouse Math. 10 (2001) 619 | DOI
,[34] Cross sections to semi-flows on 2–complexes, Ergodic Theory Dynam. Systems 23 (2003) 143 | DOI
,[35] Combinatorial mapping-torus, branched surfaces and free group automorphisms, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007) 405
,[36] Ascending HNN extensions of finitely generated free groups are Hopfian, Bull. London Math. Soc. 33 (2001) 292 | DOI
, , , ,[37] The expansion factors of an outer automorphism and its inverse, Trans. Amer. Math. Soc. 359 (2007) 3185 | DOI
, ,[38] Algebraic topology, Cambridge Univ. Press (2002)
,[39] Algorithmic detectability of iwip automorphisms, Bull. Lond. Math. Soc. 46 (2014) 279 | DOI
,[40] Cannon–Thurston fibers for iwip automorphisms of FN, J. Lond. Math. Soc. 91 (2015) 203 | DOI
, ,[41] Stallings foldings and subgroups of free groups, J. Algebra 248 (2002) 608 | DOI
, ,[42] On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014) 391 | DOI
, ,[43] 1–formes fermées singulières et groupe fondamental, Invent. Math. 88 (1987) 635 | DOI
,[44] Hyperbolic surface bundles over the circle, from: "Progress in knot theory and related topics" (editors M Boileau, M Domergue, Y Mathieu, K Millett), Travaux en Cours 56, Hermann (1997) 121
, ,[45] Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519 | DOI
,[46] The Alexander polynomial of a 3–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. 35 (2002) 153 | DOI
,[47] Dynamical systems and the homology norm of a 3–manifold, I : Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449 | DOI
,[48] Dynamical systems and the homology norm of a 3–manifold, II, Invent. Math. 107 (1992) 243 | DOI
,[49] Normal subgroups with infinite cyclic quotient, Math. Sci. 4 (1979) 143
,[50] Homology branched surfaces : Thurston’s norm on H2(M3), from: "Low-dimensional topology and Kleinian groups" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 253
,[51] Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303 | DOI
,[52] The hyperbolization theorem for fibered 3–manifolds, 7, Amer. Math. Soc. (2001)
,[53] Constructing and classifying fully irreducible outer automorphisms of free groups,
,[54] Ideal Whitehead graphs in Out(Fr), II : The complete graph in each rank, J. Homotopy Relat. Struct. 10 (2015) 275 | DOI
,[55] Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008) 353 | DOI
,[56] Zariski density and genericity, Int. Math. Res. Not. 2010 (2010) 3649 | DOI
,[57] Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557
,[58] On fibering certain 3–manifolds, from: "Topology of –manifolds and related topics", Prentice-Hall (1962) 95
,[59] Topology of finite graphs, Invent. Math. 71 (1983) 551 | DOI
,[60] A norm for the homology of 3–manifolds, 339, Amer. Math. Soc. (1986)
,[61] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI
,[62] On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI
,[63] Mapping tori of outer automorphisms of free groups, PhD thesis, Rutgers, NJ (2002)
,Cité par Sources :