Dynamics on free-by-cyclic groups
Geometry & topology, Tome 19 (2015) no. 5, pp. 2801-2899.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a free-by-cyclic group G = FN φ determined by any outer automorphism φ Out(FN) which is represented by an expanding irreducible train-track map f, we construct a K(G,1) 2–complex X called the folded mapping torus of f, and equip it with a semiflow. We show that X enjoys many similar properties to those proven by Thurston and Fried for the mapping torus of a pseudo-Anosov homeomorphism. In particular, we construct an open, convex cone A H1(X; ) = Hom(G; ) containing the homomorphism u0: G having ker(u0) = FN, a homology class ϵ H1(X; ), and a continuous, convex, homogeneous of degree 1 function : A with the following properties. Given any primitive integral class u A there is a graph Θu X such that:

DOI : 10.2140/gt.2015.19.2801
Classification : 20F65
Keywords: train track map, free-by-cyclic group, entropy

Dowdall, Spencer 1 ; Kapovich, Ilya 2 ; Leininger, Christopher J 2

1 Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240, USA
2 Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA
@article{GT_2015_19_5_a8,
     author = {Dowdall, Spencer and Kapovich, Ilya and Leininger, Christopher J},
     title = {Dynamics on free-by-cyclic groups},
     journal = {Geometry & topology},
     pages = {2801--2899},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2801},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/}
}
TY  - JOUR
AU  - Dowdall, Spencer
AU  - Kapovich, Ilya
AU  - Leininger, Christopher J
TI  - Dynamics on free-by-cyclic groups
JO  - Geometry & topology
PY  - 2015
SP  - 2801
EP  - 2899
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/
DO  - 10.2140/gt.2015.19.2801
ID  - GT_2015_19_5_a8
ER  - 
%0 Journal Article
%A Dowdall, Spencer
%A Kapovich, Ilya
%A Leininger, Christopher J
%T Dynamics on free-by-cyclic groups
%J Geometry & topology
%D 2015
%P 2801-2899
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/
%R 10.2140/gt.2015.19.2801
%F GT_2015_19_5_a8
Dowdall, Spencer; Kapovich, Ilya; Leininger, Christopher J. Dynamics on free-by-cyclic groups. Geometry & topology, Tome 19 (2015) no. 5, pp. 2801-2899. doi : 10.2140/gt.2015.19.2801. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2801/

[1] L M Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk SSSR 128 (1959) 647

[2] I Agol, Ideal triangulations of pseudo-Anosov mapping tori, from: "Topology and geometry in dimension three" (editors W Li, L Bartolini, J Johnson, F Luo, R Myers, J H Rubinstein), Contemp. Math. 560, Amer. Math. Soc. (2011) 1 | DOI

[3] Y Algom-Kfir, E Hironaka, K Rafi, Digraphs and cycle polynomials for free-by-cyclic groups, Geom. Topol. 19 (2015) 1111 | DOI

[4] Y Algom-Kfir, K Rafi, Mapping tori of small dilatation expanding train-track maps, Topology Appl. 180 (2015) 44 | DOI

[5] L Alsedà, F Mañosas, P Mumbrú, Minimizing topological entropy for continuous maps on graphs, Ergodic Theory Dynam. Systems 20 (2000) 1559 | DOI

[6] M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 | DOI

[7] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[8] M Bestvina, M Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014) 104 | DOI

[9] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1 | DOI

[10] R Bieri, W D Neumann, R Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987) 451 | DOI

[11] R Bott, L W Tu, Differential forms in algebraic topology, 82, Springer (1982)

[12] R Bowen, Topological entropy and axiom A, from: "Global Analysis", Proc. Symp. Pure Math. 14, Amer. Math. Soc. (1970) 23

[13] P Brinkmann, Hyperbolic automorphisms of free groups, Geom. Funct. Anal. 10 (2000) 1071 | DOI

[14] P Brinkmann, S Schleimer, Computing triangulations of mapping tori of surface homeomorphisms, Experiment. Math. 10 (2001) 571 | DOI

[15] J O Button, Mapping tori with first Betti number at least two, J. Math. Soc. Japan 59 (2007) 351 | DOI

[16] D Calegari, J Maher, Statistics and compression of scl, Ergodic Theory Dynam. Systems 35 (2015) 64 | DOI

[17] M Clay, A Pettet, Twisting out fully irreducible automorphisms, Geom. Funct. Anal. 20 (2010) 657 | DOI

[18] M Denker, C Grillenberger, K Sigmund, Ergodic theory on compact spaces, 527, Springer (1976) | DOI

[19] S Dowdall, I Kapovich, C J Leininger, McMullen polynomials and Lipschitz flows for free-by-cyclic groups,

[20] S Dowdall, I Kapovich, C J Leininger, Dynamics on free-by-cyclic groups, (2013)

[21] S Dowdall, I Kapovich, C J Leininger, Unbounded asymmetry of stretch factors, C. R. Math. Acad. Sci. Paris 352 (2014) 885 | DOI

[22] T Downarowicz, Entropy in dynamical systems, 18, Cambridge Univ. Press (2011) | DOI

[23] N M Dunfield, Alexander and Thurston norms of fibered 3–manifolds, Pacific J. Math. 200 (2001) 43 | DOI

[24] B Farb, C J Leininger, D Margalit, Small dilatation pseudo-Anosov homeomorphisms and 3–manifolds, Adv. Math. 228 (2011) 1466 | DOI

[25] M Farber, R Geĭgan, D Shyutts, Closed 1–forms in topology and geometric group theory, Uspekhi Mat. Nauk 65 (2010) 145 | DOI

[26] A Fathi, F Laudenbach, V Poénaru, editors, Travaux de Thurston sur les surfaces, 66–67, Soc. Math. France (1979) 284

[27] M Feighn, M Handel, Mapping tori of free group automorphisms are coherent, Ann. of Math. 149 (1999) 1061 | DOI

[28] S Francaviglia, A Martino, Metric properties of outer space, Publ. Mat. 55 (2011) 433 | DOI

[29] D Fried, Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helv. 57 (1982) 237 | DOI

[30] D Fried, The geometry of cross sections to flows, Topology 21 (1982) 353 | DOI

[31] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[32] F Gautero, Dynamical 2–complexes, Geometriae Dedicata 88 (2001) 283 | DOI

[33] F Gautero, Feuilletages de 2–complexes, Ann. Fac. Sci. Toulouse Math. 10 (2001) 619 | DOI

[34] F Gautero, Cross sections to semi-flows on 2–complexes, Ergodic Theory Dynam. Systems 23 (2003) 143 | DOI

[35] F Gautero, Combinatorial mapping-torus, branched surfaces and free group automorphisms, Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 (2007) 405

[36] R Geoghegan, M L Mihalik, M Sapir, D T Wise, Ascending HNN extensions of finitely generated free groups are Hopfian, Bull. London Math. Soc. 33 (2001) 292 | DOI

[37] M Handel, L Mosher, The expansion factors of an outer automorphism and its inverse, Trans. Amer. Math. Soc. 359 (2007) 3185 | DOI

[38] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[39] I Kapovich, Algorithmic detectability of iwip automorphisms, Bull. Lond. Math. Soc. 46 (2014) 279 | DOI

[40] I Kapovich, M Lustig, Cannon–Thurston fibers for iwip automorphisms of FN, J. Lond. Math. Soc. 91 (2015) 203 | DOI

[41] I Kapovich, A Myasnikov, Stallings foldings and subgroups of free groups, J. Algebra 248 (2002) 608 | DOI

[42] I Kapovich, K Rafi, On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014) 391 | DOI

[43] G Levitt, 1–formes fermées singulières et groupe fondamental, Invent. Math. 88 (1987) 635 | DOI

[44] D D Long, U Oertel, Hyperbolic surface bundles over the circle, from: "Progress in knot theory and related topics" (editors M Boileau, M Domergue, Y Mathieu, K Millett), Travaux en Cours 56, Hermann (1997) 121

[45] C T Mcmullen, Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. 33 (2000) 519 | DOI

[46] C T Mcmullen, The Alexander polynomial of a 3–manifold and the Thurston norm on cohomology, Ann. Sci. École Norm. Sup. 35 (2002) 153 | DOI

[47] L Mosher, Dynamical systems and the homology norm of a 3–manifold, I : Efficient intersection of surfaces and flows, Duke Math. J. 65 (1992) 449 | DOI

[48] L Mosher, Dynamical systems and the homology norm of a 3–manifold, II, Invent. Math. 107 (1992) 243 | DOI

[49] W D Neumann, Normal subgroups with infinite cyclic quotient, Math. Sci. 4 (1979) 143

[50] U Oertel, Homology branched surfaces : Thurston’s norm on H2(M3), from: "Low-dimensional topology and Kleinian groups" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 253

[51] U Oertel, Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303 | DOI

[52] J P Otal, The hyperbolization theorem for fibered 3–manifolds, 7, Amer. Math. Soc. (2001)

[53] C Pfaff, Constructing and classifying fully irreducible outer automorphisms of free groups,

[54] C Pfaff, Ideal Whitehead graphs in Out(Fr), II : The complete graph in each rank, J. Homotopy Relat. Struct. 10 (2015) 275 | DOI

[55] I Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008) 353 | DOI

[56] I Rivin, Zariski density and genericity, Int. Math. Res. Not. 2010 (2010) 3649 | DOI

[57] M Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557

[58] J Stallings, On fibering certain 3–manifolds, from: "Topology of –manifolds and related topics", Prentice-Hall (1962) 95

[59] J R Stallings, Topology of finite graphs, Invent. Math. 71 (1983) 551 | DOI

[60] W P Thurston, A norm for the homology of 3–manifolds, 339, Amer. Math. Soc. (1986)

[61] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[62] D Tischler, On fibering certain foliated manifolds over S1, Topology 9 (1970) 153 | DOI

[63] Z Wang, Mapping tori of outer automorphisms of free groups, PhD thesis, Rutgers, NJ (2002)

Cité par Sources :