Cellular properties of nilpotent spaces
Geometry & topology, Tome 19 (2015) no. 5, pp. 2741-2766.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that cellular approximations of nilpotent Postnikov stages are always nilpotent Postnikov stages, in particular classifying spaces of nilpotent groups are turned into classifying spaces of nilpotent groups. We use a modified Bousfield–Kan homology completion tower zkX whose terms we prove are all X–cellular for any X. As straightforward consequences, we show that if X is K–acyclic and nilpotent for a given homology theory K, then so are all its Postnikov sections PnX, and that any nilpotent space for which the space of pointed self-maps map(X,X) is “canonically” discrete must be aspherical.

DOI : 10.2140/gt.2015.19.2741
Classification : 55P60, 20F18, 55N20, 55R35
Keywords: cellular approximation, nilpotent group, generalized homology theory, classifying spaces of groups, Eilenberg–Mac Lane space

Chachólski, Wojciech 1 ; Farjoun, Emmanuel Dror 2 ; Flores, Ramón 3 ; Scherer, Jérôme 4

1 Department of Mathematics, KTH Stockholm, Lindstedtsvägen 25, 10044 Stockholm, Sweden
2 Department of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
3 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
4 Department of Mathematics, EPFL Lausanne, Station 8, 1015 Lausanne, Switzerland
@article{GT_2015_19_5_a6,
     author = {Chach\'olski, Wojciech and Farjoun, Emmanuel Dror and Flores, Ram\'on and Scherer, J\'er\^ome},
     title = {Cellular properties of nilpotent spaces},
     journal = {Geometry & topology},
     pages = {2741--2766},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2741},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2741/}
}
TY  - JOUR
AU  - Chachólski, Wojciech
AU  - Farjoun, Emmanuel Dror
AU  - Flores, Ramón
AU  - Scherer, Jérôme
TI  - Cellular properties of nilpotent spaces
JO  - Geometry & topology
PY  - 2015
SP  - 2741
EP  - 2766
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2741/
DO  - 10.2140/gt.2015.19.2741
ID  - GT_2015_19_5_a6
ER  - 
%0 Journal Article
%A Chachólski, Wojciech
%A Farjoun, Emmanuel Dror
%A Flores, Ramón
%A Scherer, Jérôme
%T Cellular properties of nilpotent spaces
%J Geometry & topology
%D 2015
%P 2741-2766
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2741/
%R 10.2140/gt.2015.19.2741
%F GT_2015_19_5_a6
Chachólski, Wojciech; Farjoun, Emmanuel Dror; Flores, Ramón; Scherer, Jérôme. Cellular properties of nilpotent spaces. Geometry & topology, Tome 19 (2015) no. 5, pp. 2741-2766. doi : 10.2140/gt.2015.19.2741. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2741/

[1] M Blomgren, W Chachólski, E D Farjoun, Y Segev, Idempotent transformations of finite groups, Adv. Math. 233 (2013) 56 | DOI

[2] A K Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math. Soc. 7 (1994) 831 | DOI

[3] A K Bousfield, Homotopical localizations of spaces, Amer. J. Math. 119 (1997) 1321 | DOI

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972)

[5] W Chachólski, On the functors CW A and PA, Duke Math. J. 84 (1996) 599 | DOI

[6] W Chachólski, Desuspending and delooping cellular inequalities, Invent. Math. 129 (1997) 37 | DOI

[7] W Chachólski, A generalization of the triad theorem of Blakers–Massey, Topology 36 (1997) 1381 | DOI

[8] W Chachólski, E Damian, E D Farjoun, Y Segev, The A–core and A–cover of a group, J. Algebra 321 (2009) 631 | DOI

[9] W Chachólski, W G Dwyer, M Intermont, v∗–torsion spaces and thick classes, Math. Ann. 336 (2006) 13 | DOI

[10] W Chachólski, P E Parent, D Stanley, Cellular generators, Proc. Amer. Math. Soc. 132 (2004) 3397 | DOI

[11] W Chachólski, J Scherer, K Werndli, Homotopy excision and cellularity,

[12] E B Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971) 107 | DOI

[13] A Dold, R Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958) 239 | DOI

[14] W G Dwyer, J P C Greenlees, S Iyengar, Duality in algebra and topology, Adv. Math. 200 (2006) 357 | DOI

[15] E D Farjoun, Cellular inequalities, from: "The Čech centennial" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 159 | DOI

[16] E D Farjoun, Cellular spaces, null spaces and homotopy localization, 1622, Springer (1996)

[17] E D Farjoun, Two completion towers for generalized homology, from: "Une dégustation topologique (Topological morsels) : Homotopy theory in the Swiss Alps" (editors D Arlettaz, K Hess), Contemp. Math. 265, Amer. Math. Soc. (2000) 27 | DOI

[18] E D Farjoun, R Göbel, Y Segev, Cellular covers of groups, J. Pure Appl. Algebra 208 (2007) 61 | DOI

[19] R J Flores, Nullification and cellularization of classifying spaces of finite groups, Trans. Amer. Math. Soc. 359 (2007) 1791 | DOI

[20] R J Flores, J Scherer, Cellularization of classifying spaces and fusion properties of finite groups, J. Lond. Math. Soc. 76 (2007) 41 | DOI

[21] T Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965) 295 | DOI

[22] J Kiessling, Classification of certain cellular classes of chain complexes, Israel J. Math. 174 (2009) 179 | DOI

[23] A Libman, Universal spaces for homotopy limits of modules over coaugmented functors, I, Topology 42 (2003) 555 | DOI

[24] H Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120 (1984) 39 | DOI

[25] J P Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. 58 (1953) 258 | DOI

[26] S Shamir, Cellular approximations and the Eilenberg–Moore spectral sequence, Algebr. Geom. Topol. 9 (2009) 1309 | DOI

Cité par Sources :