The Adams–Novikov spectral sequence and Voevodsky’s slice tower
Geometry & topology, Tome 19 (2015) no. 5, pp. 2691-2740.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the spectral sequence induced by the Betti realization of the slice tower for the motivic sphere spectrum agrees with the Adams–Novikov spectral sequence, after a suitable reindexing. The proof relies on a partial extension of Deligne’s décalage construction to the Tot–tower of a cosimplicial spectrum.

DOI : 10.2140/gt.2015.19.2691
Classification : 14F42, 55T15, 55P42
Keywords: Morel–Voevodsky stable homotopy category, slice tower, Adams–Novikov spectral sequence

Levine, Marc 1

1 Fakultät Mathematik, Campus Essen, Universität Duisburg-Essen, 45117 Essen, Germany
@article{GT_2015_19_5_a5,
     author = {Levine, Marc},
     title = {The {Adams{\textendash}Novikov} spectral sequence and {Voevodsky{\textquoteright}s} slice tower},
     journal = {Geometry & topology},
     pages = {2691--2740},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2691},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2691/}
}
TY  - JOUR
AU  - Levine, Marc
TI  - The Adams–Novikov spectral sequence and Voevodsky’s slice tower
JO  - Geometry & topology
PY  - 2015
SP  - 2691
EP  - 2740
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2691/
DO  - 10.2140/gt.2015.19.2691
ID  - GT_2015_19_5_a5
ER  - 
%0 Journal Article
%A Levine, Marc
%T The Adams–Novikov spectral sequence and Voevodsky’s slice tower
%J Geometry & topology
%D 2015
%P 2691-2740
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2691/
%R 10.2140/gt.2015.19.2691
%F GT_2015_19_5_a5
Levine, Marc. The Adams–Novikov spectral sequence and Voevodsky’s slice tower. Geometry & topology, Tome 19 (2015) no. 5, pp. 2691-2740. doi : 10.2140/gt.2015.19.2691. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2691/

[1] J F Adams, Stable homotopy and generalised homology, University of Chicago Press (1974)

[2] J Ayoub, Note sur les opérations de Grothendieck et la réalisation de Betti, J. Inst. Math. Jussieu 9 (2010) 225 | DOI

[3] C Barwick, On left and right model categories and left and right Bousfield localizations, Homology, Homotopy Appl. 12 (2010) 245

[4] A K Bousfield, Cosimplicial resolutions and homotopy spectral sequences in model categories, Geom. Topol. 7 (2003) 1001 | DOI

[5] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, 304, Springer (1972)

[6] P Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. (1971) 5

[7] D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615 | DOI

[8] J Heller, K Ormsby, Galois equivariance and stable motivic homotopy theory,

[9] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003)

[10] J Hornbostel, Localizations in motivic homotopy theory, Math. Proc. Cambridge Philos. Soc. 140 (2006) 95 | DOI

[11] M Hovey, Model categories, 63, Amer. Math. Soc. (1999)

[12] M Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001) 63 | DOI

[13] M Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015) 173 | DOI

[14] D C Isaksen, Etale realization on the A1–homotopy theory of schemes, Adv. Math. 184 (2004) 37 | DOI

[15] J F Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 | DOI

[16] J F Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445

[17] T Lawson, Notes on motivic homotopy theory, Lecture notes from a seminar given by Mike Hopkins at Harvard University (2004)

[18] M Levine, The slice filtration and Grothendieck–Witt groups, Pure Appl. Math. Q. 7 (2011) 1543 | DOI

[19] M Levine, Convergence of Voevodsky’s slice tower, Doc. Math. 18 (2013) 907

[20] M Levine, A comparison of motivic and classical stable homotopy theories, J. Topol. 7 (2014) 327 | DOI

[21] F Morel, An introduction to A1–homotopy theory, from: "Contemporary developments in algebraic –theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357

[22] F Morel, The stable A1–connectivity theorems, –Th. 35 (2005) 1 | DOI

[23] N Naumann, M Spitzweck, P A Østvær, Motivic Landweber exactness, Doc. Math. 14 (2009) 551

[24] I Panin, K Pimenov, O Röndigs, A universality theorem for Voevodsky’s algebraic cobordism spectrum, Homology, Homotopy Appl. 10 (2008) 211

[25] I Panin, K Pimenov, O Röndigs, On Voevodsky’s algebraic K–theory spectrum, from: "Algebraic topology" (editors N A Baas, E M Friedlander, B Jahren, P A Østvær), Abel Symp. 4, Springer (2009) 279 | DOI

[26] P Pelaez, Multiplicative properties of the slice filtration, 335, Soc. Math. France (2011)

[27] P Pelaez, The unstable slice filtration, Trans. Amer. Math. Soc. 366 (2014) 5991 | DOI

[28] J Riou, Catégorie homotopique stable d’un site suspendu avec intervalle, Bull. Soc. Math. France 135 (2007) 495

[29] D P Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006) 461 | DOI

[30] D P Sinha, The topology of spaces of knots: Cosimplicial models, Amer. J. Math. 131 (2009) 945 | DOI

[31] M Spitzweck, Slices of motivic Landweber spectra, J. –Theory 9 (2012) 103 | DOI

[32] G Vezzosi, Brown–Peterson spectra in stable A1–homotopy theory, Rend. Sem. Mat. Univ. Padova 106 (2001) 47

[33] V Voevodsky, A1–homotopy theory, from: "Proceedings of the International Congress of Mathematicians, Vol. I", Geronimo (1998) 579

[34] V Voevodsky, A possible new approach to the motivic spectral sequence for algebraic K–theory, from: "Recent progress in homotopy theory" (editors D M Davis, J Morava, G Nishida, W S Wilson, N Yagita), Contemp. Math. 293, Amer. Math. Soc. (2002) 371 | DOI

[35] V Voevodsky, Motivic Eilenberg–Maclane spaces, Publ. Math. Inst. Hautes Études Sci. (2010) 1 | DOI

[36] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI

Cité par Sources :