Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper we will promote the 3D index of an ideal triangulation of an oriented cusped –manifold (a collection of –series with integer coefficients, introduced by Dimofte, Gaiotto and Gukov) to a topological invariant of oriented cusped hyperbolic –manifolds. To achieve our goal we show that (a) admits an index structure if and only if is –efficient and (b) if is hyperbolic, it has a canonical set of –efficient ideal triangulations related by – and – moves which preserve the 3D index. We illustrate our results with several examples.
Garoufalidis, Stavros 1 ; Hodgson, Craig D 2 ; Rubinstein, J Hyam 2 ; Segerman, Henry 3
@article{GT_2015_19_5_a4, author = {Garoufalidis, Stavros and Hodgson, Craig D and Rubinstein, J Hyam and Segerman, Henry}, title = {1{\textendash}efficient triangulations and the index of a cusped hyperbolic 3{\textendash}manifold}, journal = {Geometry & topology}, pages = {2619--2689}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2619}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2619/} }
TY - JOUR AU - Garoufalidis, Stavros AU - Hodgson, Craig D AU - Rubinstein, J Hyam AU - Segerman, Henry TI - 1–efficient triangulations and the index of a cusped hyperbolic 3–manifold JO - Geometry & topology PY - 2015 SP - 2619 EP - 2689 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2619/ DO - 10.2140/gt.2015.19.2619 ID - GT_2015_19_5_a4 ER -
%0 Journal Article %A Garoufalidis, Stavros %A Hodgson, Craig D %A Rubinstein, J Hyam %A Segerman, Henry %T 1–efficient triangulations and the index of a cusped hyperbolic 3–manifold %J Geometry & topology %D 2015 %P 2619-2689 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2619/ %R 10.2140/gt.2015.19.2619 %F GT_2015_19_5_a4
Garoufalidis, Stavros; Hodgson, Craig D; Rubinstein, J Hyam; Segerman, Henry. 1–efficient triangulations and the index of a cusped hyperbolic 3–manifold. Geometry & topology, Tome 19 (2015) no. 5, pp. 2619-2689. doi : 10.2140/gt.2015.19.2619. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2619/
[1] Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein–Penner’s method, Proc. Amer. Math. Soc. 129 (2001) 2431 | DOI
,[2] A TQFT from Quantum Teichmüller theory, Comm. Math. Phys. 330 (2014) 887 | DOI
, ,[3] Classical and quantum dilogarithmic invariants of flat PSL(2, C)–bundles over 3–manifolds, Geom. Topol. 9 (2005) 493 | DOI
, ,[4] Quantum hyperbolic geometry, Algebr. Geom. Topol. 7 (2007) 845 | DOI
, ,[5] Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014) | DOI
, , ,[6] Branched standard spines of 3–manifolds, 1653, Springer (1997) | DOI
, ,[7] Plane curves associated to character varieties of 3–manifolds, Invent. Math. 118 (1994) 47 | DOI
, , , , ,[8] SnapPy, a computer program for studying the topology of 3–manifolds
, , ,[9] Triangulations: Structures for algorithms and applications, 25, Springer (2010) | DOI
, , ,[10] 3–manifolds and 3d indices, Adv. Theor. Math. Phys. 17 (2013) 975 | DOI
, , ,[11] Gauge theories labelled by three-manifolds, Comm. Math. Phys. 325 (2014) 367 | DOI
, , ,[12] The quantum content of the gluing equations, Geom. Topol. 17 (2013) 1253 | DOI
, ,[13] Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67
, ,[14] The quantum content of the normal surfaces in a three-manifold, J. Knot Theory Ramifications 17 (2008) 1005 | DOI
, ,[15] 3D index data
,[16] The 3D index of an ideal triangulation and angle structures,
,[17] From state-integrals to q–series,
, ,[18] Nahm sums, stability and the colored Jones polynomial, Res. Math. Sci. 2 (2015) | DOI
, ,[19] Alternating knots, planar graphs, and q–series, Ramanujan J. 36 (2015) 501 | DOI
, ,[20] Empirical relations between q–series and Kashaev’s invariant of knots (2013)
, ,[21] Discriminants, resultants, and multidimensional determinants, Birkhäuser (1994) | DOI
, , ,[22] Canonical triangulations of Dehn fillings, Geom. Topol. 14 (2010) 193 | DOI
, ,[23] Notes on basic 3–manifold topology (2007)
,[24] Triangulations of hyperbolic 3–manifolds admitting strict angle structures, J. Topol. 5 (2012) 887 | DOI
, , ,[25] 0–efficient triangulations of 3–manifolds, J. Differential Geom. 65 (2003) 61
, ,[26] Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987) 335 | DOI
,[27] Ideal triangulations of 3–manifolds, I : Spun normal surface theory, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 235 | DOI
, ,[28] Ideal triangulations of 3–manifolds, II : Taut and angle structures, Algebr. Geom. Topol. 5 (2005) 1505 | DOI
, ,[29] The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997) 269 | DOI
,[30] A TQFT of Turaev–Viro type on shaped triangulations,
, , ,[31] Taut ideal triangulations of 3–manifolds, Geom. Topol. 4 (2000) 369 | DOI
,[32] Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243 | DOI
,[33] An algorithm to determine the Heegaard genus of simple 3–manifolds with nonempty boundary, Alg. Geom. Topol. 8 (2008) 911 | DOI
,[34] Realization of the Stasheff polytope, Arch. Math. Basel 83 (2004) 267 | DOI
,[35] Angle structures and normal surfaces, Trans. Amer. Math. Soc. 360 (2008) 2849 | DOI
, ,[36] Categories for the working mathematician, 5, Springer (1971)
,[37] Transformations of special spines, and the Zeeman conjecture, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987) 1104, 1119
,[38] Algorithmic topology and classification of 3–manifolds, 9, Springer (2007) | DOI
,[39] Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic 3–manifolds, from: "Topology ’90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 243 | DOI
,[40] Volumes of hyperbolic three-manifolds, Topology 24 (1985) 307 | DOI
, ,[41] Standard spines and 3–manifolds, PhD thesis, Scuola Normale Superiore, Pisa (1995)
,[42] Standard moves for standard polyhedra and spines, Rend. Circ. Mat. Palermo Suppl. (1988) 391
,[43] Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3–dimensional manifolds, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1
,[44] Geometric bistellar flips: The setting, the context and a construction, from: "International Congress of Mathematicians, Vol. III" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 931
,[45] Homotopy associativity of H–spaces, I, II, Trans. Amer. Math. Soc. 108, 275-292; ibid. 108 (1963) 293 | DOI
,[46] From operads to “physically” inspired theories, from: "Operads : Proceedings of Renaissance Conferences" (editors J L Loday, J D Stasheff, A A Voronov), Contemp. Math. 202, Amer. Math. Soc. (1997) 53 | DOI
,[47] Almost normal surfaces in 3–manifolds, Trans. Amer. Math. Soc. 352 (2000) 171 | DOI
,[48] The geometry and topology of three-manifolds, lecture notes (1979)
,[49] Hyperbolic structures on three-manifolds, PhD thesis, Princeton Univ. (1985)
,Cité par Sources :