Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We embed triangulated categories defined by quivers with potential arising from ideal triangulations of marked bordered surfaces into Fukaya categories of quasiprojective –folds associated to meromorphic quadratic differentials. Together with previous results, this yields nontrivial computations of spaces of stability conditions on Fukaya categories of symplectic six-manifolds.
Smith, Ivan 1
@article{GT_2015_19_5_a3, author = {Smith, Ivan}, title = {Quiver algebras as {Fukaya} categories}, journal = {Geometry & topology}, pages = {2557--2617}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2557}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2557/} }
Smith, Ivan. Quiver algebras as Fukaya categories. Geometry & topology, Tome 19 (2015) no. 5, pp. 2557-2617. doi : 10.2140/gt.2015.19.2557. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2557/
[1] On the Fukaya categories of higher-genus surfaces, Adv. Math. 217 (2008) 1192 | DOI
,[2] Exact Lagrangians in plumbings, Geom. Funct. Anal. 22 (2012) 785 | DOI
, ,[3] Intersection theory for Lagrangian immersions, Math. Res. Lett. 12 (2005) 543 | DOI
,[4] Lagrangian submanifolds and Lefschetz pencils, J. Symplectic Geom. 3 (2005) 171 | DOI
, , ,[5] Quadratic differentials as stability conditions, Publ. Math. Inst. Hautes Études Sci. 121 (2015) 155 | DOI
, ,[6] Double solids, Adv. in Math. 47 (1983) 107 | DOI
,[7] Geometric transitions and integrable systems, Nuclear Phys. B 752 (2006) 329 | DOI
, , , , ,[8] Cluster algebras and triangulated surfaces, I : Cluster complexes, Acta Math. 201 (2008) 83 | DOI
, , ,[9] Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010) 521 | DOI
,[10] Lagrangian intersection Floer theory : Anomaly and obstruction, I, 46, Amer. Math. Soc. (2009)
, , , ,[11] Lagrangian intersection Floer theory : Anomaly and obstruction, II, 46, Amer. Math. Soc. (2009)
, , , ,[12] Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010) 23 | DOI
, , , ,[13] Wild wall crossing and BPS giants,
, , , , ,[14] The representation type of Jacobian algebras,
, , ,[15] Calabi–Yau algebras,
,[16] Lagrangian spheres in S2 ×S2, Geom. Funct. Anal. 14 (2004) 303 | DOI
,[17] Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI
,[18] A theory of generalized Donaldson–Thomas invariants, 1020, AMS (2012) | DOI
, ,[19] Calabi–Yau triangulated categories, from: "Trends in representation theory of algebras and related topics" (editor A Skowroński), Eur. Math. Soc. (2008) 467 | DOI
,[20] Deformed Calabi–Yau completions, J. Reine Angew. Math. 654 (2011) 125 | DOI
,[21] Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011) 2118 | DOI
, ,[22] Quivers, Floer cohomology and braid group actions, J. Amer. Math. Soc. 15 (2002) 203 | DOI
, ,[23] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations,
, ,[24] Wall-crossing structures in Donaldson–Thomas invariants, integrable systems and mirror symmetry,
, ,[25] Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. 98 (2009) 797 | DOI
,[26] Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007) 1057 | DOI
,[27] 2–CY–tilted algebras that are not Jacobian,
,[28] Karoubianness of a triangulated category, J. Algebra 310 (2007) 452 | DOI
, ,[29] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004)
, ,[30] Lagrangian matching invariants for fibred four-manifolds, I, Geom. Topol. 11 (2007) 759 | DOI
,[31] On the spherical twists on 3–Calabi–Yau categories from marked surfaces,
,[32] Complete intersections of two or more quadrics, PhD thesis, University of Cambridge (1972)
,[33] The A∞ deformation theory of a point and the derived categories of local Calabi–Yaus, J. Algebra 320 (2008) 3232 | DOI
,[34] A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003 | DOI
,[35] A biased view of symplectic cohomology, from: "Current developments in Math., " (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International Press (2008) 211
,[36] Fukaya categories and Picard–Lefschetz theory, , Eur. Math. Soc. (2008) | DOI
,[37] Homological mirror symmetry for the genus-two curve, J. Algebraic Geom. 20 (2011) 727 | DOI
,[38] Lagrangian homology spheres in (Am) Milnor fibres via C∗–equivariant A∞–modules, Geom. Topol. 16 (2012) 2343 | DOI
,[39] Abstract analogues of flux as symplectic invariants, 137, Soc. Math. France (2014) 135
,[40] On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011) 271
,[41] Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012) 149 | DOI
,[42] Symplectic conifold transitions, J. Differential Geom. 62 (2002) 209
, , ,[43] Quadratic differentials, 5, Springer (1984) | DOI
,[44] Sheaves on fibered threefolds and quiver sheaves, Comm. Math. Phys. 278 (2008) 627 | DOI
,[45] Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002) 1075
, ,Cité par Sources :