Motivic Donaldson–Thomas invariants for the one-loop quiver with potential
Geometry & topology, Tome 19 (2015) no. 5, pp. 2535-2555.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the motivic Donaldson–Thomas invariants of the one-loop quiver, with an arbitrary potential. This is the first computation of motivic Donaldson–Thomas invariants to use in an essential way the full machinery of μ̂–equivariant motives, for which we prove a dimensional reduction result similar to that of Behrend, Bryan and Szendrői in their study of degree-zero motivic Donaldson–Thomas invariants. Our result differs from theirs in that it involves nontrivial monodromy.

DOI : 10.2140/gt.2015.19.2535
Classification : 14N35, 14D23
Keywords: motivic Donaldson–Thomas theory, vanishing cycles, quivers

Davison, Ben 1 ; Meinhardt, Sven 2

1 Section de mathématiques, École Polytechnique Fédérale de Lausanne, Station 8, Bâtiment MA, CH-1015 Lausanne, Switzerland
2 Fachbereich C — Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstrasse 20, D-42119 Wuppertal, Germany
@article{GT_2015_19_5_a2,
     author = {Davison, Ben and Meinhardt, Sven},
     title = {Motivic {Donaldson{\textendash}Thomas} invariants for the one-loop quiver with potential},
     journal = {Geometry & topology},
     pages = {2535--2555},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2015},
     doi = {10.2140/gt.2015.19.2535},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/}
}
TY  - JOUR
AU  - Davison, Ben
AU  - Meinhardt, Sven
TI  - Motivic Donaldson–Thomas invariants for the one-loop quiver with potential
JO  - Geometry & topology
PY  - 2015
SP  - 2535
EP  - 2555
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/
DO  - 10.2140/gt.2015.19.2535
ID  - GT_2015_19_5_a2
ER  - 
%0 Journal Article
%A Davison, Ben
%A Meinhardt, Sven
%T Motivic Donaldson–Thomas invariants for the one-loop quiver with potential
%J Geometry & topology
%D 2015
%P 2535-2555
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/
%R 10.2140/gt.2015.19.2535
%F GT_2015_19_5_a2
Davison, Ben; Meinhardt, Sven. Motivic Donaldson–Thomas invariants for the one-loop quiver with potential. Geometry & topology, Tome 19 (2015) no. 5, pp. 2535-2555. doi : 10.2140/gt.2015.19.2535. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/

[1] K Behrend, Donaldson–Thomas type invariants via microlocal geometry, Ann. of Math. 170 (2009) 1307 | DOI

[2] K Behrend, J Bryan, B Szendrői, Motivic degree zero Donaldson–Thomas invariants, Invent. Math. 192 (2013) 111 | DOI

[3] A Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480 | DOI

[4] A Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667

[5] J Denef, F Loeser, Geometry on arc spaces of algebraic varieties, from: "European Congress of Mathematics, Volume I" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 201, Birkhäuser, Basel (2001) 327

[6] J Denef, F Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002) 1031 | DOI

[7] T Ekedahl, The Grothendieck group of algebraic stacks,

[8] J Engel, M Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009) 817 | DOI

[9] D Joyce, Configurations in abelian categories, I : Basic properties and moduli stacks, Adv. Math. 203 (2006) 194 | DOI

[10] D Joyce, Configurations in abelian categories, II : Ringel–Hall algebras, Adv. Math. 210 (2007) 635 | DOI

[11] D Joyce, Configurations in abelian categories, III : Stability conditions and identities, Adv. Math. 215 (2007) 153 | DOI

[12] D Joyce, Motivic invariants of Artin stacks and “stack functions”, Q. J. Math. 58 (2007) 345 | DOI

[13] D Joyce, Configurations in abelian categories, IV : Invariants and changing stability conditions, Adv. Math. 217 (2008) 125 | DOI

[14] D Joyce, Y Song, A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI

[15] M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations,

[16] M Kontsevich, Y Soibelman, Motivic Donaldson–Thomas invariants : Summary of results, from: "Mirror symmetry and tropical geometry" (editors R Castaño-Bernard, Y Soibelman, I Zharkov), Contemp. Math. 527, Amer. Math. Soc. (2010) 55 | DOI

[17] M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI

[18] A Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI

[19] Q T Lê, Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J. 164 (2015) 157 | DOI

[20] D Maulik, Motivic residues and Donaldson–Thomas theory, preprint

[21] A Morrison, S Mozgovoy, K Nagao, B Szendrői, Motivic Donaldson–Thomas invariants of the conifold and the refined topological vertex, Adv. Math. 230 (2012) 2065 | DOI

[22] S Mozgovoy, On the motivic Donaldson–Thomas invariants of quivers with potentials, Math. Res. Lett. 20 (2013) 107 | DOI

[23] S Mozgovoy, Wall-crossing formulas for framed objects, Q. J. Math. 64 (2013) 489 | DOI

[24] R P Thomas, A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000) 367

Cité par Sources :