Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We compute the motivic Donaldson–Thomas invariants of the one-loop quiver, with an arbitrary potential. This is the first computation of motivic Donaldson–Thomas invariants to use in an essential way the full machinery of –equivariant motives, for which we prove a dimensional reduction result similar to that of Behrend, Bryan and Szendrői in their study of degree-zero motivic Donaldson–Thomas invariants. Our result differs from theirs in that it involves nontrivial monodromy.
Davison, Ben 1 ; Meinhardt, Sven 2
@article{GT_2015_19_5_a2, author = {Davison, Ben and Meinhardt, Sven}, title = {Motivic {Donaldson{\textendash}Thomas} invariants for the one-loop quiver with potential}, journal = {Geometry & topology}, pages = {2535--2555}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2535}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/} }
TY - JOUR AU - Davison, Ben AU - Meinhardt, Sven TI - Motivic Donaldson–Thomas invariants for the one-loop quiver with potential JO - Geometry & topology PY - 2015 SP - 2535 EP - 2555 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/ DO - 10.2140/gt.2015.19.2535 ID - GT_2015_19_5_a2 ER -
%0 Journal Article %A Davison, Ben %A Meinhardt, Sven %T Motivic Donaldson–Thomas invariants for the one-loop quiver with potential %J Geometry & topology %D 2015 %P 2535-2555 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/ %R 10.2140/gt.2015.19.2535 %F GT_2015_19_5_a2
Davison, Ben; Meinhardt, Sven. Motivic Donaldson–Thomas invariants for the one-loop quiver with potential. Geometry & topology, Tome 19 (2015) no. 5, pp. 2535-2555. doi : 10.2140/gt.2015.19.2535. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2535/
[1] Donaldson–Thomas type invariants via microlocal geometry, Ann. of Math. 170 (2009) 1307 | DOI
,[2] Motivic degree zero Donaldson–Thomas invariants, Invent. Math. 192 (2013) 111 | DOI
, , ,[3] Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973) 480 | DOI
,[4] Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 667
,[5] Geometry on arc spaces of algebraic varieties, from: "European Congress of Mathematics, Volume I" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 201, Birkhäuser, Basel (2001) 327
, ,[6] Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002) 1031 | DOI
, ,[7] The Grothendieck group of algebraic stacks,
,[8] Smooth models of quiver moduli, Math. Z. 262 (2009) 817 | DOI
, ,[9] Configurations in abelian categories, I : Basic properties and moduli stacks, Adv. Math. 203 (2006) 194 | DOI
,[10] Configurations in abelian categories, II : Ringel–Hall algebras, Adv. Math. 210 (2007) 635 | DOI
,[11] Configurations in abelian categories, III : Stability conditions and identities, Adv. Math. 215 (2007) 153 | DOI
,[12] Motivic invariants of Artin stacks and “stack functions”, Q. J. Math. 58 (2007) 345 | DOI
,[13] Configurations in abelian categories, IV : Invariants and changing stability conditions, Adv. Math. 217 (2008) 125 | DOI
,[14] A theory of generalized Donaldson–Thomas invariants, 1020, Amer. Math. Soc. (2012) | DOI
, ,[15] Stability structures, motivic Donaldson–Thomas invariants and cluster transformations,
, ,[16] Motivic Donaldson–Thomas invariants : Summary of results, from: "Mirror symmetry and tropical geometry" (editors R Castaño-Bernard, Y Soibelman, I Zharkov), Contemp. Math. 527, Amer. Math. Soc. (2010) 55 | DOI
, ,[17] Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 | DOI
, ,[18] Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495 | DOI
,[19] Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J. 164 (2015) 157 | DOI
,[20] Motivic residues and Donaldson–Thomas theory, preprint
,[21] Motivic Donaldson–Thomas invariants of the conifold and the refined topological vertex, Adv. Math. 230 (2012) 2065 | DOI
, , , ,[22] On the motivic Donaldson–Thomas invariants of quivers with potentials, Math. Res. Lett. 20 (2013) 107 | DOI
,[23] Wall-crossing formulas for framed objects, Q. J. Math. 64 (2013) 489 | DOI
,[24] A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000) 367
,Cité par Sources :