Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A Morse –function is a generic smooth map from a smooth manifold to a surface. In the absence of definite folds (in which case we say that the Morse –function is indefinite), these are natural generalizations of broken (Lefschetz) fibrations. We prove existence and uniqueness results for indefinite Morse –functions mapping to arbitrary compact, oriented surfaces. “Uniqueness” means there is a set of moves which are sufficient to go between two homotopic indefinite Morse –functions while remaining indefinite throughout. We extend the existence and uniqueness results to indefinite, Morse –functions with connected fibers.
Gay, David T 1 ; Kirby, Robion 2
@article{GT_2015_19_5_a1, author = {Gay, David T and Kirby, Robion}, title = {Indefinite {Morse} 2{\textendash}functions : {Broken} fibrations and generalizations}, journal = {Geometry & topology}, pages = {2465--2534}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2465}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2465/} }
TY - JOUR AU - Gay, David T AU - Kirby, Robion TI - Indefinite Morse 2–functions : Broken fibrations and generalizations JO - Geometry & topology PY - 2015 SP - 2465 EP - 2534 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2465/ DO - 10.2140/gt.2015.19.2465 ID - GT_2015_19_5_a1 ER -
Gay, David T; Kirby, Robion. Indefinite Morse 2–functions : Broken fibrations and generalizations. Geometry & topology, Tome 19 (2015) no. 5, pp. 2465-2534. doi : 10.2140/gt.2015.19.2465. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2465/
[1] Every 4–manifold is BLF, J. Gökova Geom. Topol. 2 (2008) 83
, ,[2] Round handles and nonsingular Morse–Smale flows, Ann. of Math. 102 (1975) 41 | DOI
,[3] Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043 | DOI
, , ,[4] Existence of broken Lefschetz fibrations, Int. Math. Res. Not. 2008 (2008) | DOI
,[5] Round handles, logarithmic transforms and smooth 4–manifolds, J. Topol. 6 (2013) 49 | DOI
, ,[6] La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudoisotopie, Inst. Hautes Études Sci. Publ. Math. (1970) 5 | DOI
,[7] Constructing Lefschetz-type fibrations on four-manifolds, Geom. Topol. 11 (2007) 2075 | DOI
, ,[8] Fiber-connected, indefinite Morse 2–functions on connected n–manifolds, Proc. Natl. Acad. Sci. USA 108 (2011) 8122 | DOI
, ,[9] Pseudoisotopies of compact manifolds, 6, Soc. Math. France (1973)
, ,[10] Local properties of self-dual harmonic 2–forms on a 4–manifold, J. Reine Angew. Math. 577 (2004) 105 | DOI
,[11] Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 | DOI
,[12] A calculus for framed links in S3, Invent. Math. 45 (1978) 35 | DOI
,[13] Cohomotopy sets of 4–manifolds, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 161 | DOI
, , ,[14] Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535
,[15] Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277 | DOI
,[16] Lagrangian matching invariants for fibred four-manifolds, I, Geom. Topol. 11 (2007) 759 | DOI
,[17] Lagrangian matching invariants for fibred four-manifolds, II, Geom. Topol. 12 (2008) 1461 | DOI
,[18] Elimination of definite fold, Kyushu J. Math. 60 (2006) 363 | DOI
,[19] Seiberg–Witten and Gromov invariants for symplectic 4–manifolds (editor R Wentworth), 2, International Press (2000)
,[20] The principal fibration sequence and the second cohomotopy set, from: "Proceedings of the Freedman Fest" (editors R Kirby, V Krushkal, Z Wang), Geom. Topol. Monogr. 18 (2012) 235 | DOI
,[21] The Gromov invariant and the Donaldson–Smith standard surface count, Geom. Topol. 8 (2004) 565 | DOI
,[22] Stability of unfoldings in space and time, Acta Math. 135 (1975) 57 | DOI
,[23] The h–principle for broken Lefschetz fibrations, Geom. Topol. 14 (2010) 1015 | DOI
,Cité par Sources :