Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study diffeomorphisms of compact, oriented surfaces, developing methods of distinguishing those which have positive factorizations into Dehn twists from those which satisfy the weaker condition of being right-veering. We use these to construct open book decompositions of Stein-fillable –manifolds whose monodromies have no positive factorization.
Wand, Andy 1
@article{GT_2015_19_5_a0, author = {Wand, Andy}, title = {Factorizations of diffeomorphisms of compact surfaces with boundary}, journal = {Geometry & topology}, pages = {2407--2464}, publisher = {mathdoc}, volume = {19}, number = {5}, year = {2015}, doi = {10.2140/gt.2015.19.2407}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2407/} }
TY - JOUR AU - Wand, Andy TI - Factorizations of diffeomorphisms of compact surfaces with boundary JO - Geometry & topology PY - 2015 SP - 2407 EP - 2464 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2407/ DO - 10.2140/gt.2015.19.2407 ID - GT_2015_19_5_a0 ER -
Wand, Andy. Factorizations of diffeomorphisms of compact surfaces with boundary. Geometry & topology, Tome 19 (2015) no. 5, pp. 2407-2464. doi : 10.2140/gt.2015.19.2407. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2407/
[1] Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319 | DOI
, ,[2] Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012) 1
, , ,[3] A primer on mapping class groups, 49, Princeton Univ. Press (2012)
, ,[4] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. Press (2002) 405
,[5] Overtwisted open books from sobering arcs, Algebr. Geom. Topol. 5 (2005) 1173 | DOI
,[6] Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 | DOI
, , ,[7] Planar open books with four binding components, Algebr. Geom. Topol. 11 (2011) 909 | DOI
,[8] Compact Stein surfaces with boundary as branched covers of B4, Invent. Math. 143 (2001) 325 | DOI
, ,Cité par Sources :