Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the figure-eight knot complement admits a uniformizable spherical structure, ie it occurs as the manifold at infinity of a complex hyperbolic orbifold. The uniformization is unique provided we require the peripheral subgroups to have unipotent holonomy.
Deraux, Martin 1 ; Falbel, Elisha 2
@article{GT_2015_19_1_a4, author = {Deraux, Martin and Falbel, Elisha}, title = {Complex hyperbolic geometry of the figure-eight knot}, journal = {Geometry & topology}, pages = {237--293}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, doi = {10.2140/gt.2015.19.237}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/} }
TY - JOUR AU - Deraux, Martin AU - Falbel, Elisha TI - Complex hyperbolic geometry of the figure-eight knot JO - Geometry & topology PY - 2015 SP - 237 EP - 293 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/ DO - 10.2140/gt.2015.19.237 ID - GT_2015_19_1_a4 ER -
Deraux, Martin; Falbel, Elisha. Complex hyperbolic geometry of the figure-eight knot. Geometry & topology, Tome 19 (2015) no. 1, pp. 237-293. doi : 10.2140/gt.2015.19.237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/
[1] The geometry of discrete groups, 91, Springer (1995)
,[2] Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911
, , ,[3] Spherical hypersurfaces in complex manifolds, Invent. Math. 33 (1976) 223
, ,[4] Deforming the R–Fuchsian (4,4,4)–triangle group into a lattice, Topology 45 (2006) 989
,[5] A spherical CR–structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69
,[6] Representations of fundamental groups of 3–manifolds into PGL(3, C) : Exact computations in low complexity, to appear in Geom. Dedicata
, , ,[7] Branched sperical CR–structures on the complement of the figure-eight knot, Michigan Math. J. 63 (2014) 635
, ,[8] Gluing equations for PGL(n, C)–representations of 3–manifolds,
, , ,[9] Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3–manifolds, Trans. Amer. Math. Soc. 278 (1983) 573
,[10] Complex hyperbolic geometry, Clarendon Press (1999)
,[11] Kleinian groups, 287, Springer (1988)
,[12] On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171
,[13] Complex hyperbolic Kleinian groups, in preparation
,[14] Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc. 115 (1992) 221
,[15] A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975) 281
,[16] Knots and links, 7, Publish or Perish (1990)
,[17] Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105
,[18] Real hyperbolic on the outside, complex hyperbolic on the inside, Invent. Math. 151 (2003) 221
,[19] Spherical CR–geometry and Dehn surgery, 165, Princeton Univ. Press (2007)
,[20] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,Cité par Sources :