Complex hyperbolic geometry of the figure-eight knot
Geometry & topology, Tome 19 (2015) no. 1, pp. 237-293.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the figure-eight knot complement admits a uniformizable spherical CR structure, ie it occurs as the manifold at infinity of a complex hyperbolic orbifold. The uniformization is unique provided we require the peripheral subgroups to have unipotent holonomy.

DOI : 10.2140/gt.2015.19.237
Classification : 32V05, 57M50, 22E40
Keywords: spherical CR structures, geometric structures on $3$–manifolds, complex hyperbolic geometry

Deraux, Martin 1 ; Falbel, Elisha 2

1 Institut Fourier, Université de Grenoble 1, BP 74, Saint Martin d’Hères, Cedex, France
2 Institut de Mathématiques, Université Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris, France
@article{GT_2015_19_1_a4,
     author = {Deraux, Martin and Falbel, Elisha},
     title = {Complex hyperbolic geometry of the figure-eight knot},
     journal = {Geometry & topology},
     pages = {237--293},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     doi = {10.2140/gt.2015.19.237},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/}
}
TY  - JOUR
AU  - Deraux, Martin
AU  - Falbel, Elisha
TI  - Complex hyperbolic geometry of the figure-eight knot
JO  - Geometry & topology
PY  - 2015
SP  - 237
EP  - 293
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/
DO  - 10.2140/gt.2015.19.237
ID  - GT_2015_19_1_a4
ER  - 
%0 Journal Article
%A Deraux, Martin
%A Falbel, Elisha
%T Complex hyperbolic geometry of the figure-eight knot
%J Geometry & topology
%D 2015
%P 237-293
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/
%R 10.2140/gt.2015.19.237
%F GT_2015_19_1_a4
Deraux, Martin; Falbel, Elisha. Complex hyperbolic geometry of the figure-eight knot. Geometry & topology, Tome 19 (2015) no. 1, pp. 237-293. doi : 10.2140/gt.2015.19.237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.237/

[1] A F Beardon, The geometry of discrete groups, 91, Springer (1995)

[2] N Bergeron, E Falbel, A Guilloux, Tetrahedra of flags, volume and homology of SL(3), Geom. Topol. 18 (2014) 1911

[3] D Burns Jr., S Shnider, Spherical hypersurfaces in complex manifolds, Invent. Math. 33 (1976) 223

[4] M Deraux, Deforming the R–Fuchsian (4,4,4)–triangle group into a lattice, Topology 45 (2006) 989

[5] E Falbel, A spherical CR–structure on the complement of the figure eight knot with discrete holonomy, J. Differential Geom. 79 (2008) 69

[6] E Falbel, P V Koseleff, F Rouiller, Representations of fundamental groups of 3–manifolds into PGL(3, C) : Exact computations in low complexity, to appear in Geom. Dedicata

[7] E Falbel, J Wang, Branched sperical CR–structures on the complement of the figure-eight knot, Michigan Math. J. 63 (2014) 635

[8] S Garoufalidis, M Goerner, C K Zickert, Gluing equations for PGL(n, C)–representations of 3–manifolds,

[9] W M Goldman, Conformally flat manifolds with nilpotent holonomy and the uniformization problem for 3–manifolds, Trans. Amer. Math. Soc. 278 (1983) 573

[10] W M Goldman, Complex hyperbolic geometry, Clarendon Press (1999)

[11] B Maskit, Kleinian groups, 287, Springer (1988)

[12] G D Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J. Math. 86 (1980) 171

[13] J R Parker, Complex hyperbolic Kleinian groups, in preparation

[14] M B Phillips, Dirichlet polyhedra for cyclic groups in complex hyperbolic space, Proc. Amer. Math. Soc. 115 (1992) 221

[15] R Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975) 281

[16] D Rolfsen, Knots and links, 7, Publish or Perish (1990)

[17] R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105

[18] R E Schwartz, Real hyperbolic on the outside, complex hyperbolic on the inside, Invent. Math. 151 (2003) 221

[19] R E Schwartz, Spherical CR–geometry and Dehn surgery, 165, Princeton Univ. Press (2007)

[20] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

Cité par Sources :