A thick subcategory theorem for modules over certain ring spectra
Geometry & topology, Tome 19 (2015) no. 4, pp. 2359-2392.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify thick subcategories of the –categories of perfect modules over ring spectra which arise as functions on even periodic derived stacks satisfying affineness and regularity conditions. For example, we show that the thick subcategories of perfect modules over TMF are in natural bijection with the subsets of the underlying space of the moduli stack of elliptic curves which are closed under specialization.

DOI : 10.2140/gt.2015.19.2359
Classification : 55P43, 18E30
Keywords: thick subcategories, topological modular forms, derived stacks

Mathew, Akhil 1

1 Department of Mathematics, University of California, Berkeley, Office 854, Berkeley, CA 94720, USA
@article{GT_2015_19_4_a11,
     author = {Mathew, Akhil},
     title = {A thick subcategory theorem for modules over certain ring spectra},
     journal = {Geometry & topology},
     pages = {2359--2392},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     doi = {10.2140/gt.2015.19.2359},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2359/}
}
TY  - JOUR
AU  - Mathew, Akhil
TI  - A thick subcategory theorem for modules over certain ring spectra
JO  - Geometry & topology
PY  - 2015
SP  - 2359
EP  - 2392
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2359/
DO  - 10.2140/gt.2015.19.2359
ID  - GT_2015_19_4_a11
ER  - 
%0 Journal Article
%A Mathew, Akhil
%T A thick subcategory theorem for modules over certain ring spectra
%J Geometry & topology
%D 2015
%P 2359-2392
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2359/
%R 10.2140/gt.2015.19.2359
%F GT_2015_19_4_a11
Mathew, Akhil. A thick subcategory theorem for modules over certain ring spectra. Geometry & topology, Tome 19 (2015) no. 4, pp. 2359-2392. doi : 10.2140/gt.2015.19.2359. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2359/

[1] D Abramovich, M Olsson, A Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008) 1057

[2] V Angeltveit, $A_\infty$–obstruction theory and the strict associativity of $E/I$ (2004)

[3] A Baker, B Richter, Invertible modules for commutative $\mathbb S$–algebras with residue fields, Manuscripta Math. 118 (2005) 99

[4] A Baker, B Richter, Galois extensions of Lubin–Tate spectra, Homology, Homotopy Appl. 10 (2008) 27

[5] P Balmer, Tensor triangular geometry, from: "Proceedings of the International Congress of Mathematicians, Vol. II" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan Book Agency (2010) 85

[6] T Bauer, Computation of the homotopy of the spectrum $\mathrm{Tmf}$, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13 (2008) 11

[7] D Benson, S B Iyengar, H Krause, Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Supér. 41 (2008) 573

[8] E S Devinatz, M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, I, Ann. of Math. 128 (1988) 207

[9] D Eisenbud, Commutative algebra, Graduate Texts in Math. 150, Springer (1995)

[10] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules and algebras in stable homotopy theory, Math. Surveys and Monographs 47, Amer. Math. Soc. (1997)

[11] P G Goerss, Quasicoherent sheaves on the moduli stack of formal groups,

[12] M J Hopkins, Global methods in homotopy theory, from: "Homotopy theory" (editors E Rees, J D S Jones), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press (1987) 73

[13] M J Hopkins, J H Palmieri, J H Smith, Vanishing lines in generalized Adams spectral sequences are generic, Geom. Topol. 3 (1999) 155

[14] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1

[15] M Hovey, J H Palmieri, N P Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128, Amer. Math. Soc. (1997)

[16] M Hovey, N P Strickland, Morava $K$–theories and localisation, Mem. Amer. Math. Soc. 139, Amer. Math. Soc. (1999)

[17] J Konter, The homotopy groups of the spectrum Tmf,

[18] G Laumon, L Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb. 39, Springer (2000)

[19] J Lurie, Chromatic homotopy theory

[20] J Lurie, DAG VIII: Quasicoherent sheaves and Tannaka duality theorems

[21] J Lurie, DAG XII: Proper morphisms, completions and the Grothendieck existence theorem

[22] J Lurie, Higher algebra

[23] A Mathew, The Galois group of a stable homotopy theory,

[24] A Mathew, L Meier, Affineness and chromatic homotopy theory,

[25] L Meier, United elliptic homology, PhD thesis, University of Bonn (2012)

[26] A Neeman, The chromatic tower for $D`(`R`)`$, Topology 31 (1992) 519

[27] D C Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351

[28] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Math. 121, Academic Press (1986)

[29] J Rognes, Galois extensions of structured ring spectra: Stably dualizable groups, Mem. Amer. Math. Soc. 192, Amer. Math. Soc. (2008)

[30] D Rydh, Noetherian approximation of algebraic spaces and stacks, J. Algebra 422 (2015) 105

[31] , Stacks project

[32] R W Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997) 1

[33] W C Waterhouse, Introduction to affine group schemes, Graduate Texts in Math. 66, Springer (1979)

Cité par Sources :