Simple Riemannian surfaces are scattering rigid
Geometry & topology, Tome 19 (2015) no. 4, pp. 2329-2357.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Scattering rigidity of a Riemannian manifold allows one to recognize the metric of a manifold with boundary by looking at the directions of geodesics at the boundary. Lens rigidity allows one to recognize the metric of a manifold with boundary from the same information plus the length of geodesics. There are a variety of results about lens rigidity but very little is known for scattering rigidity. We will discuss the subtle difference between these two types of rigidities and prove that they are equivalent for two-dimensional simple manifolds with boundaries. In particular, this implies that two-dimensional simple manifolds (such as the flat disk) are scattering rigid since they are lens/boundary rigid.

DOI : 10.2140/gt.2015.19.2329
Classification : 53C24, 57M27
Keywords: scattering rigidity, lens rigidity, knot

Wen, Haomin 1

1 Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
@article{GT_2015_19_4_a10,
     author = {Wen, Haomin},
     title = {Simple {Riemannian} surfaces are scattering rigid},
     journal = {Geometry & topology},
     pages = {2329--2357},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     doi = {10.2140/gt.2015.19.2329},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2329/}
}
TY  - JOUR
AU  - Wen, Haomin
TI  - Simple Riemannian surfaces are scattering rigid
JO  - Geometry & topology
PY  - 2015
SP  - 2329
EP  - 2357
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2329/
DO  - 10.2140/gt.2015.19.2329
ID  - GT_2015_19_4_a10
ER  - 
%0 Journal Article
%A Wen, Haomin
%T Simple Riemannian surfaces are scattering rigid
%J Geometry & topology
%D 2015
%P 2329-2357
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2329/
%R 10.2140/gt.2015.19.2329
%F GT_2015_19_4_a10
Wen, Haomin. Simple Riemannian surfaces are scattering rigid. Geometry & topology, Tome 19 (2015) no. 4, pp. 2329-2357. doi : 10.2140/gt.2015.19.2329. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2329/

[1] S B Alexander, I D Berg, R L Bishop, The Riemannian obstacle problem, Illinois J. Math. 31 (1987) 167

[2] G Besson, G Courtois, S Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5 (1995) 731

[3] D Burago, S Ivanov, Boundary rigidity and filling volume minimality of metrics close to a flat one, Ann. of Math. 171 (2010) 1183

[4] D Burago, S Ivanov, Area minimizers and boundary rigidity of almost hyperbolic metrics, Duke Math. J. 162 (2013) 1205

[5] S Chmutov, V Goryunov, H Murakami, Regular Legendrian knots and the HOMFLY polynomial of immersed plane curves, Math. Ann. 317 (2000) 389

[6] C B Croke, Scattering rigidity with trapped geodesics, Ergodic Theory Dynam. Systems 34 (2014) 826

[7] C B Croke, B Kleiner, A rigidity theorem for simply connected manifolds without conjugate points, Ergodic Theory Dynam. Systems 18 (1998) 807

[8] J Eaton, On spherically symmetric lenses, IRE Trans. Antennas Propa. AP-4 (1952) 66

[9] D B A Epstein, Curves on $2$–manifolds and isotopies, Acta Math. 115 (1966) 83

[10] M Gromov, Filling Riemannian manifolds, J. Differential Geom. 18 (1983) 1

[11] J H Hannay, T M Haeusser, Retroreflection by refraction, J. Modern Opt. 40 (1993) 1437

[12] A Hatcher, Notes on basic $3$–manifold topology (2000)

[13] M Kerker, The scattering of light and other electromagnetic radiation, Academic Press (1969)

[14] R Michel, Sur la rigidité imposée par la longueur des géodésiques, Invent. Math. 65 (1981/82) 71

[15] L Pestov, G Uhlmann, Two-dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. of Math. 161 (2005) 1093

Cité par Sources :