Varieties of general type with the same Betti numbers as ℙ1 × ℙ1 ×⋯ × ℙ1
Geometry & topology, Tome 19 (2015) no. 4, pp. 2257-2276.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study quotients Γn of the n–fold product of the upper half-plane by irreducible and torsion-free lattices Γ < PSL2()n with the same Betti numbers as the n–fold product (1)n of projective lines. Such varieties are called fake products of projective lines or fake (1)n. These are higher-dimensional analogs of fake quadrics. In this paper we show that the number of fake (1)n is finite (independently of n), we give examples of fake (1)4 and show that for n > 4 there are no fake (1)n of the form Γn with Γ contained in the norm-one group of a maximal order of a quaternion algebra over a real number field.

DOI : 10.2140/gt.2015.19.2257
Classification : 11F06, 22E40
Keywords: Varieties of general type, Betti numbers, arithmetic groups, quaternion algebras

Džambić, Amir 1

1 Institut für Mathematik, Johann Wolfgang Goethe Universität, Robert-Mayer-Str. 6-8, D-60325 Frankfurt am Main, Germany
@article{GT_2015_19_4_a8,
     author = {D\v{z}ambi\'c, Amir},
     title = {Varieties of general type with the same {Betti} numbers as {\ensuremath{\mathbb{P}}1} {\texttimes} {\ensuremath{\mathbb{P}}1} {\texttimes}\ensuremath{\cdots} {\texttimes} {\ensuremath{\mathbb{P}}1}},
     journal = {Geometry & topology},
     pages = {2257--2276},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     doi = {10.2140/gt.2015.19.2257},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2257/}
}
TY  - JOUR
AU  - Džambić, Amir
TI  - Varieties of general type with the same Betti numbers as ℙ1 × ℙ1 ×⋯ × ℙ1
JO  - Geometry & topology
PY  - 2015
SP  - 2257
EP  - 2276
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2257/
DO  - 10.2140/gt.2015.19.2257
ID  - GT_2015_19_4_a8
ER  - 
%0 Journal Article
%A Džambić, Amir
%T Varieties of general type with the same Betti numbers as ℙ1 × ℙ1 ×⋯ × ℙ1
%J Geometry & topology
%D 2015
%P 2257-2276
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2257/
%R 10.2140/gt.2015.19.2257
%F GT_2015_19_4_a8
Džambić, Amir. Varieties of general type with the same Betti numbers as ℙ1 × ℙ1 ×⋯ × ℙ1. Geometry & topology, Tome 19 (2015) no. 4, pp. 2257-2276. doi : 10.2140/gt.2015.19.2257. http://geodesic.mathdoc.fr/articles/10.2140/gt.2015.19.2257/

[1] I C Bauer, F Catanese, F Grunewald, The classification of surfaces with $p_g=q=0$ isogenous to a product of curves, Pure Appl. Math. Q. 4 (2008) 547

[2] K Belabas, J Buchmann, H Cohen, F Diaz Y Diaz, D Ford, P Létard, M Olivier, M Pohst, A Schwarz, Tables of number fields

[3] M Belolipetsky, B Linowitz, On fields of definition of arithmetic Kleinian reflection groups, II, Int. Math. Res. Not. 2014 (2014) 2559

[4] A Borel, Commensurability classes and volumes of hyperbolic $3$–manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 1

[5] K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer (1982)

[6] F Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122 (2000) 1

[7] T Chinburg, E Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986) 507

[8] A Džambić, Fake quadrics from irreducible lattices acting on the product of upper half planes, Math. Ann. 360 (2014) 23

[9] F Hirzebruch, Automorphe Formen und der Satz von Riemann–Roch, from: "Symposium internacional de topología algebraica International symposium on algebraic topology", Universidad Nacional Autónoma de México and UNESCO (1958) 129

[10] F Hirzebruch, Gesammelte Abhandlungen, Vol. I, Springer (1987) 1951

[11] C Maclachlan, A W Reid, The arithmetic of hyperbolic $3$–manifolds, Graduate Texts in Math. 219, Springer (2003)

[12] Y Matsushima, G Shimura, On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes, Ann. of Math. 78 (1963) 417

[13] J Neukirch, Algebraic number theory, Grundl. Math. Wissen. 322, Springer (1999)

[14] A Odlyzko, Discriminant bounds, tables of calculations (1976)

[15] G Prasad, S K Yeung, Fake projective planes, Invent. Math. 168 (2007) 321

[16] G Prasad, S K Yeung, Arithmetic fake projective spaces and arithmetic fake Grassmannians, Amer. J. Math. 131 (2009) 379

[17] G Prasad, S K Yeung, Addendum to “Fake projective planes” Invent. Math. 168 (2007) 321–370, Invent. Math. 182 (2010) 213

[18] G Prasad, S K Yeung, Nonexistence of arithmetic fake compact Hermitian symmetric spaces of type other than $A_n$ $(n\leq 4)$, J. Math. Soc. Japan 64 (2012) 683

[19] I H Shavel, A class of algebraic surfaces of general type constructed from quaternion algebras, Pacific J. Math. 76 (1978) 221

[20] G Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. 85 (1967) 58

[21] C L Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969 (1969) 87

[22] M F Vignéras, Invariants numériques des groupes de Hilbert, Math. Ann. 224 (1976) 189

[23] M F Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer (1980)

[24] J Voight, Enumeration of totally real number fields of bounded root discriminant, from: "Algorithmic number theory" (editors A J van der Poorten, A Stein), Lecture Notes in Comput. Sci. 5011, Springer (2008) 268

[25] J Voight, Tables of totally real number fields, tables of calculations (2012)

[26] L C Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer (1997)

[27] R Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981) 367

Cité par Sources :